
A Constructive Formalisation of Hoare Logic
within the Interactive Theorem Prover Agda

Project Report
Word Count: 10,000

Fraser L. Brooks 1680975
Supervisor: Vincent Rahli

Submitted in partial fulfillment
of the requirements for the degree of

Master of Science
(Computer Science)

at the
University of Birmingham
School of Computer Science

July 2021

Introduction

Program correctness is a perennial problem for software engineers
and computer scientists alike. Many methods exist for establishing the
correctness of a program, and broadly speaking these methods fall into
one of two paradigms; a program can be tested for correctness or the
correctness can be ‘proved’ outright. Due to the sheer complexity of
software engineering, testing has reigned supreme in industry as for-
mal techniques for proving correctness, while numerous, have lagged
behind practice. However, with the advent of higher-order-logic the-
orem provers and dependently typed programming languages, both
operating under the scope of the Curry-Howard correspondence, the
gap between practice and theory is shrinking.

Hoare logic is a formal system in which one can reason rigorously
about — and prove — the correctness of programs while Agda is both a
dependently typed programming language and an interactive theorem
prover in accordance with the Curry-Howard correspondence. Com-
bining the two, this work sets out to formalise the salient rules from
Hoare logic within Agda and, in doing so, provide a novel library with
which a user could reason and prove correct simple imperative-style
programs.

This formalisation was achieved via a deep embedding of both a
simple imperative language, dubbed ‘Mini-Imp,’ and of a propositional
calculus used in the reasoning about programs in the guise of Mini-
Imp’s expression language. Agda record interfaces were also used to
separate out the concerns of proving program correctness and proving
trivial results within the expression language — such as conjunction
elimination or the distributivity of multiplication over addition.

The final result is a constructive formalisation of Hoare logic and
an Agda library that is fit for the purpose of proving correct simple
imperative-style programs using the implemented Hoare logic rules. A
limitation of the work is the simplicity of the Mini-Imp language and
corresponding lack of more sophisticated logical rules, meaning there is
no facility for reasoning about more complex language constructs like
procedures, arrays or pointers. However, more powerful logics such as
‘separation logic’ could bridge this gap and owing to the expressive
power of HOL, with time, there is no reason why the current library
couldn’t be expanded to encompass separation logic too.

1

Contents
1 Preliminaries & Literature Review 3

1.1 Programming Language Semantics 3
1.1.1 Axiomatic Semantics via Hoare Logic 4
1.1.2 Predicate Transformer Semantics via

Dijkstra’s Weakest Precondition 8
1.2 Agda as an Interactive Theorem Prover 11

1.2.1 Formal Proof . 11
1.2.2 Constructive Mathematics 11
1.2.3 Interactive Theorem Provers 13

1.3 Modern Literature Review . 15

2 Specification of the Formalisation 16
2.1 Shallow vs. Deep Embedding 16
2.2 Proof Obligation Interfaces . 20
2.3 The Exppresion and/or Assertion Language 22
2.4 The ‘Mini-Imp’ Programming Language 25
2.5 The Rules to be Implemented 26

3 Implementation Details 28
3.1 Small-step Evaluation & Termination 28
3.2 Termination Proof Splitting 30
3.3 Hoare Triples in Agda . 30
3.4 Axiom of Assignment . 31
3.5 The Rule of Iteration / While Rule 31
3.6 Relation to Predicate Transformer Semantics 32

4 Project Evaluation 36
4.1 Using the System to Reason about Programs 36
4.2 Deliverables . 36
4.3 Reflection on the use of Agda 37
4.4 Missteps & Drawbacks . 37
4.5 Future Work . 38
4.6 Conclusion & Personal Reflection 38

References 39

Appendix 40

2

1 Preliminaries & Literature Review

1.1 Programming Language Semantics

“Programming began as an art”

- David Gries, The Science of Programming

Around the late 60s – early 70s, in response to the verbose and inelegant
languages of the time — some of which, sadly, are still in use today — com-
puter scientists were experimenting with different ways of giving semantics to
programming languages. The desire being partly to assist in the development
of more elegant languages but also partly to get a better mathematical grip
on the process of computer programming and, in doing so, make a science
out of the art.

Early approaches to language specification and semantics fell into what
would become the category of operational semantics1 that describe a language
in terms of how it is to be executed. Thus demonstrating that the most salient
interpretation of a program at the time was as a set of instructions destined
for execution by a machine2 rather than as a syntactic representation of the
mathematical object known as an algorithm. This lead to languages being
designed with the machines that would run them, and the programmers that
would use them, in mind. This led to a state of affairs wherein reasoning
about the correctness of programs was much harder than it needed to be and
was seen as not worth the effort.

As Dijkstra remarked at the time, the balance needed ‘redressing’ thus
leading to a couple of seminal papers, first by Hoare[7] and then himself[3]—
the latter, in part, inspired by the former. Hoare introduced axiomatic se-
mantics as a means to understanding computer programs via the assertions
that can be said to be true before and after execution.3 Then Dijkstra intro-
duced a predicate transformer semantics identifying language constructs with
functions between preconditions and postconditions — and thus, the balance
between practical power and mathematical elegance and rigour began to find
more equitable ground.

1In 1968 an operational semantics was given for Algol 68. Even earlier, in 1960, the
lambda calculus — the semantics of which is commonly understood as operational — was
evoked in giving semantics to the Lisp programming language.

2And this meant the specific and often competing machines of the time.
3Regardless of how that execution is performed!

3

1.1.1 Axiomatic Semantics via Hoare Logic

In 1967, as an alternative to operational semantics, Floyd[5] produced his
seminal paper ‘Assigning Meanings to Programs’ in which a program is given
semantics via attachment of propositions to the connections in a flow chart
with nodes as commands. In Floyd’s deductive system, whenever a command
(a node) is reached via a connection whose associated proposition is true,
then, if execution of the program leaves that node, it will leave through a
connection whose associated proposition is also true.

“A semantic definition of a particular set of command [program]
types, then, is a rule for constructing, for any command c of one of
these types, a verification condition Vc(P ; Q) on the antecedents
and consequents of c”. - Floyd[5]

The principle idea is that rather than define a program (however large
or small) by the way it should be executed, a program can be defined by
the antecedents upon the state space that must be true before execution —
hereafter referred to as preconditions — and the associated consequents upon
the state space that can be guaranteed to be true after execution — hereafter
referred to as postconditions — thus freeing the semantics from concerns of
the how in favour of the what.

These ‘antecedents/consequents upon the state space’ are first-order logic
predicates or propositions and the state space is taken most generally to be
a set of pairs of identifiers and values; again the formulation here shields
us from implementation details such as whether these ‘identifiers’ identify
memory addresses within a machine or Post-it Notes on a wall.

Later then, in 1969, Hoare[7] built upon and expanded Floyd’s work4,
applying the system to text rather than to flow charts, creating a deductive
system for reasoning about the correctness of programs as we would more
naturally recognise them. Central to Hoare’s system is the notion of a Hoare
triple which is a reformulation of Floyd’s verification condition Vc(P ; Q).
A Hoare triple associates a precondition, or a state, before execution of a
particular program with a resultant postcondition, or state, after execution.5

4Thus Hoare logic is sometimes referred to as Floyd-Hoare Logic
5NB Here, as in much of the literature, preconditions and postconditions and the actual

subsets of the state space that they describe are used interchangeably. i.e. False = ∅ and
True = S where S is the whole state space.

4

A Hoare triple is of the form ‘{{ P }} Q {{R }} ’ which can be read as . . .

• If the notation is to denote partial correctness :

– If execution of the program Q begins in a state satisfying P : then
R will be true of the resultant state so long as Q terminates.

• If the notation is to denote total correctness :

– As above, but termination of Q is also guaranteed.

A note on notation: Hoare’s original notation was P {{ Q }}R to denote partial
correctness but the notation above is now more common. Confusingly, some
use {{ P }} Q {{R }} to denote total correctness and the other form for partial
correctness. In general there seems to be no standard notation, with the
{{ P }} Q {{R }} form oft used for the form of correctness most salient for a given
work; as such, in this report, the {{ P }} Q {{R }} denotes partial correctness.

The utility of the Hoare triple notation is then immediately demonstrated
by giving the Hoare triple that characterises the statement/command that
assigns a value to a variable:

Given the expression f and assignment statement ‘x := f ’:

{{ P0 }} x := f {{ P }}

. . . where P0 is formed by substituting f for x in P (P0 = P [f /x]).

Note that in general {{ P }} Q {{ R }} is a predicate within the predicate
calculus (see 5) that can either be true or false, depending on the arguments
supplied. The triple given above, however, is actually the first and only
axiom6 in Hoare’s system as it is true for all possible P , f , and x . 7

D0 - Axiom of Assignment: `{{ P [f /x] }} x := f {{ P }} (1)

6In actuality, it is an axiom schema describing an infinite set of axioms all sharing a
common form.

7A fact that is proved constructively (along with the inference rules 2, 3, and 4,
described on page 7) as part of this formalisation.

5

This first example not only demonstrates the utility and elegance of the
Hoare triple but also shines a light on two of the stumbling blocks of Hoare
logic. The first of these is the substitution of the programming language
expression f into the predicate P thus indicating an interplay between the
expression language and the assertion language — the assertion language,
being, the language from which preconditions and postconditions are to be
formed. In theory, and in practice, this interplay isn’t a problem so long
as the assertion language is more expressive than the program’s expression
language. So long as this condition is met there will always be some sen-
sible, well-defined way of substituting an expression into an assertion and
because there is never a need to substitute in the opposite direction, no
further complications arise.8

The second stumbling block is that at first, to many, the reasoning appears
to be happening in the wrong direction. From starting condition P , we
substitute to get P0 , that is, we move from postcondition to precondition
when to many programmers, reasoning in the direction of execution feels
much more natural. The axioms that match the standard programmer’s
intuition are:

(1.) `{{ P }} x := f {{ P [x /f] }}
or . . .
(2.) `{{ P }} x := f {{ P [f /x] }}

. . . but both of these are erroneous. The first gives the false consequent
` {{ x = 1 }} x := 0 {{ x = 1 }} as a direct consequence of the fact that
(x = 1)[0/(x)] = (x = 1); as 0 doesn’t occur in ‘x = 1’. The second gives
the false consequent of `{{ x = y }} x := z {{ z = y }}via substituting x for z.

So in fact, the reasoning is in the right direction, that is, backwards.
This is in line with the radical reformulation of programming that was being
proposed at the time by Hoare, and later Dijkstra, and then most lucidly
expatiated upon in Gries’ monograph[6], ‘The Science of Programming.’ This
reformulation was to frame programming as a goal-oriented activity and to
construct programs alongside a proof of correctness, starting with the desired
postcondition — the desired output — and working backwards towards the
necessary precondition/input.9

8Within this formalisation however, this stumbling block does present a challenge as it
forces upon us a number of considerations. See subsection 2.3

9As a result, proofs of correctness constructed using the Agda library produced by this
project are also constructed backwards. See figure 3

6

So we’ve seen the characterisation of the assignment command as an
axiom. In Hoare’s original paper, the following inference rules were also
given, from which proofs of correctness could be developed, starting with the
fairly intuitive rules of consequence:

D1 - Rules of Consequence: (2)

If `{{ P }} Q {{ R }} and ` R ⇒ S then `{{ P }} Q {{ S }}
If `{{ P }} Q {{ R }} and ` S ⇒ P then `{{ S }} Q {{ R }}

Next up is the rule of composition which is the rule that allows us to chain
Hoare triples together to build up larger proofs of correctness for programs
from the proofs of correctness of these programs’ constituent parts.

D2 - Rule of Composition: (3)

If `{{ P }} Q1 {{ R1 }} and `{{ P }} Q1 {{ R2 }} then `{{ P }} Q1 ; Q2 {{ R }}

Finally the most interesting rule, the rule of iteration:

D3 - Rule of Iteration: (4)

If `{{ P ∧ B }} S {{ P }} then `{{ P }} while B do S {{ ¬B ∧ P }}

The insights on display here are that if a loop terminates, then we can be
sure that the condition B of the loop is now false, and that if we have a condi-
tion P that we know isn’t changed by the running of the body of the loop so
long as it is ran when the loop condition B is also true (`{{ P ∧ B }} S {{ P }}),
then we can also be sure that P is true after the loop terminates. And thus
the, now well known, notion of a loop invariant has been introduced.

This was one of the first contributions of the theory of programming to
the practice, viz, that when designing a loop, we should start with the desired
postcondition R and search for a P and B fitting the schema above — i.e. A
P and B such that P ∧ ¬B ⇒ R — at which point we’ll have the condition
of the loop and its precondition and all that shall be left to do is fill in the
body of the loop; which we’ll be able to do safely by making sure that P is
left invariant, and execution moves towards the falsity of B.

7

1.1.2 Predicate Transformer Semantics via
Dijkstra’s Weakest Precondition

“Program testing can be used to
show the presence of bugs, but
never to show their absence!”

- Edsger W. Dijkstra, 1970

Very early on in the field of computing science, Dijkstra, among others,
was also interested in putting programming on surer mathematical footing;
moving away from the notion of programming as a ‘chaotic contribution’ of
‘thousands of ingenious tricks’ as it was put in his talk ‘Some meditations on
Advanced Programming’[2], at the 1962 IFIP conference.

Despite some disagreements between industry and academics — or rather,
the theoretically inclined academics — as the 60s progressed and the pro-
grams being developed grew in scope, it became apparent that Dijkstra and
similar detractors of the status quo were right and that there were serious
problems with programming. Hoare’s paper had spawned a field of research
on axiomatic definitions of programming languages, and many papers were
born from this, but the utility of the approach was still subject to doubt.
Axiomatic definitions provided a way to reason about programs, but didn’t
so much present a way to develop them.

Then, in 1975, building upon Hoare’s paper, Dijkstra carried the no-
tion of an axiomatic semantics further in his very influential paper ‘Guarded
Commands and Non-Determinism’[3] — followed up by the monograph ‘A
Discipline of Programming’[4] — in which he introduced the notion of a
predicate transformer semantics.10

Whereas Hoare logic characterises programming constructs in terms of
logical assertions upon the state space, the idea behind predicate transformer
semantics is to characterise a programming construct in terms of a ‘predicate
transformer’, that is, a function that transforms one predicate into another.11

Thus was born Dijkstra’s, now well known, Weakest Precondition; usually
denoted wp(S ,R) for a command S and postcondition R .

10As well as introducing the notion of guarded commands still very much present in
languages today

11Being a function, that makes predicate transformer semantics a form of Denotational
Semantics; that is, semantics defined via reference to mathematical objects.

8

It’s useful to keep the two views in mind, that the weakest precondition is
both a predicate but also a means of characterising a particular programming
construct. It is defined for a command S and a predicate R that describes
the desired result of executing command S — that is, R is the desired post-
condition — as the predicate, wp(S ,R), that represents/captures:

“the set of all states such that execution of S begun in any one
of them is guaranteed to terminate in a finite amount of time in
a state satisfying R .” - Gries[6]

NB The term ‘weakest’ here, means the least restrictive predicate, or, if
we consider assertions as the subset of the state space they describe, then
‘weakest’ can be taken to mean the predicate with the highest cardinality.
The guarantee of termination means we’re reasoning about total correctness.
There is a closely associated notion of a weakest liberal precondition, defined
identically, but without the guarantee of termination,12and denoted wlp(S ,R).

The relation to Hoare logic should now be clear and indeed, wp(S ,R) can
be defined in terms of Hoare logic: we can say that for a particular command
S , and a postcondition R , such that R is the desired result of executing
S , then the weakest precondition is a predicate wp(S ,R), such that for any
precondition P , we have {{ P }} S {{R }} if and only if P ⇒ wp(S ,R).

P {{ S }} R = P ⇒ wp(S ,R)

{{ P }} S {{ R }} = P ⇒ wlp(S ,R)

(5)

This shows, as remarked previously, that a Hoare triple is just a statement
within the underlying predicate calculus and proving a Hoare triple — i.e. a
program — correct, is reduced to the task of proving a first-order formula!

The contribution of predicate transformer semantics, as a reformulation
of Hoare logic, is that it lay the groundwork for a new (at the time) paradigm
of programming, a science of programming [6], such that for the first time,
programmers could use theory to develop programs alongside a proof of cor-
rectness, rather than resorting to ‘ingenious’ but ‘chaotic’ tricks.

12And as such, is the more relevant predicate transformer for this work as constructive
or formal proofs of termination is a field unto itself that is not treated in this formalisation.

9

As a slight diversion, then, what does defining a language in terms of wp
look like? The simplest commands that can be characterised by their weakest
preconditions are the skip command, that does nothing, characterised by
‘wp(skip,R) = R ’, and the abort command — that aborts computation
and signifies failure, characterised by ‘wp(abort,R) =False.’

A more interesting example that should be familiar is the assignment
command as a reformulation of the axiom of assignment from Hoare logic:

wp(x := f ,R) = R [f /x] (6)

A, more interesting still, example would be a characterisation of a simple
‘IF...THEN...ELSE’ command:

wp(IF B THEN S1 ELSE S2 ,R) =

B ⇒ wp(S1,R)

∧ ¬B ⇒ wp(S2,R)

(7)

A weakest precondition for a while/iteration command becomes a little
more involved as it has to be defined inductively, similar to the above defini-
tion, only in a way that guarantees progress towards termination. As such,
it is not repeated here; the definitions above have been given only for ped-
agogical reasons to situate the Hoare logic calculus and the rules formalised
in this work fully within their understood context.13

Thankfully for Hoare logic and this formalisation, it is rarely necessary to
formulate/compute the weakest precondition itself. In so far as our concerns
are to prove the correctness of programs, it is enough to show that for a given
precondition P : P ⇒ wp(S ,R). Indeed, for the Hoare logic inference rules
2,3, and 4, given in the previous section, proofs that they do actually imply
what they claim are given in [4]/[6]. For instance, see theorem (11.6) in
[6], or the proof of the ‘Fundamental Invariance Theorem’ in [4] for a proof
that any P that satisfies a more general, non-deterministic, version of the
Rule of Iteration from the previous section, does in fact imply the weakest
precondition of the while/iterative command as given in those same works.

13NB That the definitions given here differ significantly from those in [3]/[4] wherein
the language that is defined is non-deterministic, a fact that to many a programmer might
sound alarming but in actuality makes for a much ‘cleaner’ language.

10

1.2 Agda as an Interactive Theorem Prover

“Beware of bugs in the above
code; I have only proved it
correct, not tried it.”

- Donald Knuth, 1977

With Hoare logic and programming language semantics covered, the other
prerequisite to understanding this report’s title is to briefly explain the
phrases ‘Constructive Formalisation’ and ‘Interactive Theorem Prover.’

1.2.1 Formal Proof

First up, the word ‘formalisation’, as in, a formal proof. What is a formal
proof? Well, according to Merriam-Webster’s online dictionary, a proof is:

“the cogency of evidence that compels acceptance by the mind of
a truth or a fact”

What exactly this ‘evidence’ should be is left unspecified. In a formal
proof, this evidence is situated within some logical system. It is a string
of symbols or sentences that form a well-formed formula within a formally
defined language — read, a language that has been described by precise and
unambiguous rules — each of which has a precise and unambiguous meaning
and is either an axiom within the logical system, an assumption, or follows
from one of the logical system’s inference rules. Put very simply then, a
formal proof is just a very assiduous, unambiguous, sometimes tedious, proof.

1.2.2 Constructive Mathematics

Constructive mathematics, or constructive logic, refers to mathematical or
logical reasoning within the constructivism philosophy of mathematics. It is
often characterised as classical mathematics or logic, only without the Law
of Excluded Middle and the Axiom of Choice.14 The law of the excluded
middle, sometimes called the principle or axiom of the excluded middle by
constructivists to emphasise the optionality, is the axiom stating that every

14Necessarily without the Axiom of Choice as the Axiom of Choice implies the Law of
Excluded Middle within a constructive setting.

11

proposition is either true or false; that is, ∀P .P ∨ ¬P . At first glance it
seems an obvious, even banal, tool to allow oneself; indeed it is a very useful
principle in logic upon which many famous proofs rely. So why reject it?

The beginnings of the constructivist philosophy can be traced back to
early 20th century thought led by Brouwer. The main concern of construc-
tivism is in how one asserts that a mathematical object does or does not
exist. The problem with LEM is that it allows one to assert the existence
of mathematical objects without actually specifying what they are, that is,
without constructing them. Consider the following classical proof:

- -

Theorem: There are irrational numbers a and b such that ab is rational.

Proof:
Let c =

√
2
√
2
and let P (x) = "x is rational".

Via LEM, either P (c) or ¬P (c).

If P (c):
let a = b =

√
2,

then we have ab = c,
therefore P (ab) via P (c).

If ¬P (c):
let a = c =

√
2
√
2
,

let b =
√
2,

then we have:
ab =

(√
2
√
2)√2

=
√
2
√
2
√
2
=
√
2
2
= 2

therefore P (ab) via P (2).

So the theorem holds for both P (c) and ¬P (c), and so... QED�

- -

It’s not that constructivists doubt the validity of this proof. The objection
is that the object under question — some irrational numbers a and b such
that ab is rational — hasn’t actually been given. We don’t know which of
the two cases, P (c) or ¬P (c), is true.

So, rather than characterise constructive mathematics as classical math-
ematics without the law of the excluded middle, it perhaps can be better
described positively as an approach to mathematics with stricter provability
requirements wherein a thing can be said to exist only after constructing it.

12

With all that said, it is not necessary to get caught up in the philosoph-
ical arguments or the nuances of constructivism for this present work. The
primary motivation here is that often constructive treatments of classical
results can often prove stronger and more illuminating.

Also of our concern, is that with the rise of the computer, constructive
mathematics has come into its own. A constructive proof can be read as
an algorithmic proof — read, checkable or usable by a computer. As an
example, consider the proof given just now, if we wished to do something
algorithmically with the ab-object that was proved to exist, the proof given
there wouldn’t be much use to the machine or the programmer; a com-
puter cannot proceed in two minds at once! Thus, the utility of constructive
mathematics has never been clearer, and this leads to a contribution that
computer scientists have given the world of mathematics; the subject of the
next section.

1.2.3 Interactive Theorem Provers

Interactive Theorem Provers, or proof assistants, are broadly characterised
as software systems used as an aid in the development of proofs. An early
demonstration of the use of a computer to aid mathematical endeavour is
given by Knuth and Bendix in 1970[8] in which an algorithm was devised
which was capable of deducing new laws or theorems from some given ones;
some laws of elementary group theory serving as an exmple within the paper.
The formal development of this algorithm, in the authors words was ‘primar-
ily a precise statement of what hundreds of mathematicians have been doing
for many decades.’

Of course, the development of mathematics with computational aid has
come a long way since then and there are now a plethora of so called ‘In-
teractive Theorem Provers’ to choose from. The principle idea behind all of
them is that mathematical objects can be represented as data, sometimes,
also referred to as a word, inside a machine and mathematical operations or
laws can be implemented as operations upon that data/word. These opera-
tions might be referred to as reductions. For example, we can encode in data,
or as words, the natural numbers à la Peano as follows:

A natural number is inductively defined as either:

1. The word/data: “zero”

2. Or the word/data: “suc x ” where x is some other natural number.

13

Addition over natural numbers can then be quite simply defined on a case
by case basis of the inputs:

x + y def
=

1. x = 0 : “zero + y” = “y”

2. x 6= 0 : “suc x + y” = “suc (x + y)”

With such a definition, it can be algorithmically verified that 1 + 1 ≡ 2,
with ≡ serving as definitional equality, as once both terms on either side
of the operator are maximally reduced, they are the same. In addition to
the above, the commutativity of addition could be proved, multiplication
could be defined in terms of the definition of addition etc. In fact, there are
projects operating today aiming to formalise large quantities of mathematics
in this manner within particular interactive theorem provers. For instance,
the UniMath project is a huge library of mathematics formalised within the
Coq interactive theorem prover.

Within these theorem provers then, proving that P ⇒ Q , amounts to a
search for a sequence of reductions/rules that transform the data encoding
P , into some data encoding Q . This search is done through some degree
of cooperation between the user and the machine, in some cases happening
automatically, and in others requiring human intervention and ingenuity. The
algorithmic nature of theorem provers following this pattern is what gives
this realm of mathematics a great synergy with constructive mathematics,
although it should be noted that not all interactive theorem provers have to
operate under the scope of constructive mathematics.

With that said, Agda[9] is the interactive theorem prover used within
this formalisation, chosen as it is a constructive system by default which
means that the principle of the excluded middle, if desired, would need to
be postulated as an axiom.15 This amounts to inserting it as a reduction
rule but at the cost of our proof having algorithmic meaning, because, as
was mentioned in the previous section, PEM has no computational meaning.
So this restriction is what allows Agda to also claim itself a programming
language and operate under the propositions as types paradigm, also known
as the Curry-Howard correspondence, in which the type of a program as
described by its signature becomes a proposition and an implementation of
that program becomes a proof of that proposition. Disciplined use of Agda
in this way showcases the fact that the formalisation is possible without
LEM/PEM, an unsurprising, but nice to verify, fact.

15A temptation that has been resisted in this formalisation.

14

1.3 Modern Literature Review

With most of the preliminaries out of the way, and most of them being his-
toric, it is worth examining the picture of program correctness as it appears
today. The field has come a long way despite the methodology of program
development proposed by Hoare, Dijkstra, and Gries, wherein a program is
developed alongside its proof of correctness, struggling to catch on in the
mainstream — likely as a result of programs continuing to swell in com-
plexity. Hoare logic has been expanded upon, giving rise most notably to
Separation Logic which has become a success story of the theoretical world
after making its way into industry in the form of the Infer tool which is now
in use in a plethora of tech companies. The Infer tool is a static analyser for
Java, C, C++, and other languages, capable of catching a plethora of bugs
including null pointer errors and memory leaks before they make their way
into production.

Separation logic originated from a couple of papers ([10]/[11]) in which
Hoare logic was extended to also facilitate reasoning about memory and
pointers, thus allowing one to prove correct much more complicated and
sophisticated programs rather than being limited to local variables and rea-
soning as you are in Hoare logic. Indeed, the original aims of this work were
to formalise not only Hoare logic but separation logic as well, but this proved
too much work for the time allotted.

Also of note on the modern scene is the work from a group of researchers
towards a Verified Software Toolchain[1] aiming to have a modular tool or
toolchain that can statically analyse and make observations about a source-
language and produce machine-checked proofs that guarantee the complete
correctness not only of the source-language but also of the compiled program
operating within a particular operating system.

An interesting thing to note is that the two systems above, Infer and VST,
work via the two possible relaxations of the foundational Halting Problem
which of course implies that we can never expect to have a program that for
all possible programs catches all possible bugs. The obvious workaround to
this constraint is to relax one of those two constraints, with Infer opting to
allow some false negatives — and not catch all bugs — while VST diminishes
the first constraint by constraining the programmer from constructing all
possible programs.

15

2 Specification of the Formalisation
When formalising within a symbolic system, a lot of details that are normally
swept under the rug in typical expositions need to be considered. With
the preliminaries out the way then, this section details the design decisions
that were made with regard to these unavoidable details, the justifications
for those decisions, and finally the scope of, and overarching plan for, the
formalisation at hand.

These decisions include: the choice between a deep or shallow embedding
of the expression language and the programming language, the choice of pro-
gramming language to model and the encoding of that language as embedded
within Agda, and finally the choice of inference rules to be formalised for use
within proofs of program correctness.

2.1 Shallow vs. Deep Embedding

For Hoare logic to be formalised within Agda, a simple imperative language
for the Hoare logic to apply to needs to be constructed and formalised first.
This language itself, will actually comprise two languages, the language defin-
ing the commands of the language (IF_ELSE_ etc. . .) and the expression and
or assertion language defining both the expressions that appear within those
commands and the assertions for the logical calculus.

Given that Agda is a programming language, then, the task is to embed
one language within another; a task that is actually rather common. So-called
Domain Specific Languages, as opposed to General Purpose Languages, are
programming languages designed with a specific use case in mind. DSLs
can be implemented via standalone syntax and semantics with their own
compilation techniques, but often they are instead embedded within a host
language making use of that language’s syntax, semantics, and compilation
techniques and thus saving a lot of work for the implementer.

The choice one has to make when embedding a language within another
is between a shallow embedding or a deep embedding. The two approaches
are closely related with the principal difference being that in a shallow
embedding, only the semantics are captured, whereas in a deep embedding
the syntax itself is embedded along with some evaluation function, some-
times called an observation function. This function then essentially provides
an operational semantics to the syntax of the embedded language, while in a
shallow embedding the semantics is in terms of the host language’s semantics.

16

As an illustrative example, consider a simple expression language of arithmetic
expressions with integer constants and addition. A deep embedding might
have the form:

data Expr : Set where
Val : Integer → Expr
Add : Expr → Expr → Expr

eval : Expr → Integer
eval (Val n) = n
eval (Add x y) = eval x + eval y

With observation function eval . Meanwhile, a shallow embedding of the
same language may have the form:

Expr = Integer

val : Integer → Expr
val n = n

add : Expr → Expr → Expr
add x y = x + y

eval : Expr → Integer
eval = id

Both approaches have their advantages. A deep embedding allows for the
easy modification of evaluation functions without having to change the lan-
guage itself. In fact, with a deep embedding, multiple evaluation functions
can be given, which amounts to being able to give multiple non-compositional
(operational) semantics for the language; whether that counts as an advan-
tage or disadvantage will depend on the context.

Meanwhile, a shallowly embedded language can only be given semantics
compositionally through the host language, but the pay-off for this is that it
makes it much easier to change the embedded language as a small change will
not necessitate a change in the evaluation function and all its dependents.

17

This project, then, demands a choice of embedding strategy to be made
for the two languages, viz, the imperative language to be reasoned about
and the expression language within that language. Ultimately, the choice
was made in favour of a deep embedding for both.

The justification for the imperative language to be a deep embedding
comes from the recognition that rather than just formalising Hoare logic
in Agda, this project could also have practical utility in forming a system
wherein a small snippet of, say, a C program, could easily be translated into
Agda, perhaps even automatically. Then a proof of its correctness could be
constructed, giving great confidence in the correctness of this snippet within
its original program. This made it desirable that the embedded imperative
language closely mirror a simple real-world language, lest the user of the
system lose confidence that the program proved correct in Agda accurately
captures the one they started with.

Another consideration is that a deep embedding of the imperative lan-
guage allows for the giving of an operational semantics for that language
in the form of its evaluation function. In that sense it could be said that
the present work, beyond just formalising some Hoare logic, is giving both
an axiomatic semantics and an operational semantics to a simple impera-
tive language and showing that both are consistent with one another; thus
expanding the scope of the formalisation.

The decision to have the assertion language deeply embedded, however,
is a little harder to justify. As this is the language that will also form the
logical assertions of the predicate calculus underlying the Hoare logic, it may
seem wasteful to embed this first order logic within the higher order logic
underpinning Agda.

Agda already has an extensive standard library covering many of the
definitions and theorems that may be needed within the Hoare logic calculus.
For instance, in Hoare logic, it is often necessary to prove P ⇒ Q for some
P and Q — e.g. when the user has {{A }} S1 {{ P }} and {{Q }} S2 {{B }} and
wants to derive {{A }} S1 ; S2 {{B }} — and if, say, this P is some conjunction
involving Q , then what is required is a mechanism/proof corresponding to
conjunction elimination. A deep embedding prevents a user from simply
using the Agda standard library equivalent of conjunction elimination —
the projections out of the product/sigma type — and instead necessitates
re-proving this fact for the embedded language itself.

18

Despite this drawback, once again the desire for this project to not only be
a theoretical achievement but also to have potential practical use as a means
of checking the correctness of real programs influenced the decision in favour
of a deep embedding. This is in keeping with the spirit of Hoare’s original
paper, in which the theory was being developed with a purpose in mind.
The problem with relying on Agda’s standard library is that the treatments
therein don’t necessarily capture real programming — most notably in the
case of integers where the standard library definition obviously corresponds
to the mathematical, ‘true’ -integer that is unbounded in both directions,
whereas in most programming languages, certainly the ones this work is
aiming to reason about, an integer is bounded by dint of it being implemented
by the compiler as, usually, either a 32 or 16-bit word.

Hoare was very particular in his original paper to only introduce arithmetic
axioms that are true regardless of whether one was reasoning with the tradi-
tional infinite set of integers or within the programmer’s finite sets of ‘inte-
gers’ and regardless of the choice of overflow strategy. He also pointed to the
fact that the actual arithmetic or overflow strategy could be identified via a
set of mutually exclusive axioms — a fact made use of in the proof obligation
interfaces described in the next section.

In keeping with this spirit, a deep embedding, it was reasoned, would
force the user of this library to think consciously about the inferences that are
being used and whether they really hold within the ‘real’ world. The intention
being that if a proof of correctness depended, say, on a particular overflow
strategy, this fact would be rendered explicit on the way to constructing that
proof.

The end result of these twin choices of embedding strategy is that only
the Hoare logic calculus itself takes place within Agda’s higher order logic,
with the rest of the formalisation busying itself within the deep embedding
of one of the two languages. Despite this, there will be very little, if any,
reason to use Agda’s standard library and higher expressive power within the
process of proving correct a simple program within this library as the rules
provided should be sufficient for programs within the scope of the library’s
capabilities.

19

2.2 Proof Obligation Interfaces

As was mentioned in the previous section, the decision to go with a deep
embedding for the expression and or assertion language brings with it a
major drawback. While some users may wish to rigorously prove all aspects
of a program correct, ideally, the user shouldn’t be forced to re-prove simple,
obvious, and banal lemmas when proving a program correct in the library.

This led to the decision to build into the formalisation/library a pair of
interfaces using Agda’s record types — a generalisation of the dependent
product type. These two interfaces being:

• Data-Interface: to abstract out the representation of the identifiers,
values, and operations and lemmas thereupon.

• State-Interface: to abstract out the representation of the state space
and lemmas thereupon.

The intention of these interfaces would be twofold. First, to allow the user
to forestall, perhaps indefinitely, the obligation of proving simple or obvious
lemmas when proving a program correct within the library. Secondly, to
separate out the concerns and hide implementation details that are adjunct to
Hoare logic but not the main concern in any proof of correctness constructed
therein. For example, while reasoning within the Hoare logic calculus it
is undesirable to have knowledge or use of the fact that the state space is
represented within the formalisation in a particular way, say, as a list of pairs
of identifiers and variables, as no proof should depend on the exact choice of
representation.

A sketch of the interfaces as currently defined in the library are given in
figure 1. A user of this library would be able to add any needed lemmas
to these interfaces as required for any proof of correctness being worked
upon. The user that is after a total formalisation then, can go on to prove
correct the added inference rules or axioms, within a given instantiation of the
interface. Such an instantiation is bound by the definition of the interface
to properly identify its arithmetic and overflow strategy, thus forcing the
explicit consideration on the part of the user of such matters. Alternatively,
the user interested only in the mechanics of the Hoare logic calculus can forgo
instantiating the interface indefinitely and still prove programs correct.

20

Figure 1: Sketch of Data-Interface and State-Interface

Data-Interface:
data: functions:
Id : Set WFF : Val → Set
Val : Set toBVal : (v : Val)
variables: → WFF v
x : Val → Bool
y : Val arith. rules from [7]:
z : Val A1 : x+y≡y+x
constants:

...
0○ : Val A9 : x* 1○≡x
1○ : Val ARITHMETIC-STRATEGY : ...
2○ : Val OVERFLOW-STRATEGY : ...
operations: propositional rules:
|| : ... DeMorgan1 : ...
&& : ... DeMorgan2 : ...
... ConjunctionElimleft : ...

+ : ...
...

* : ... NegationElim : ...

State-Interface:
definition of state space:
S : Set
empty/initial state:

: S
state operations:
updateState : Id → Val → S → S
getIdVal : Id → S → Maybe Val
dropValue : Id → S → S
state space lemmas as needed:
...

NB that the interfaces have been instantiated in full as part of this project with Id
def
= N

and Val
def
= (Z x Bool) — where N, Z, and Bool are the Agda standard library versions.

Implicit casting is then assumed between Ints and Bools within the Val type and the state
space is defined as lists of pairs of Id’s and Val’s — i.e. S def

= (List (Id x Val)).

21

2.3 The Expression and/or Assertion Language

The specification of the expression language is straightforward, with the in-
tent being that it closely mirror the array of operands available in most
imperative languages. It is described, as it appears in the formalisation, via
the following context-free grammar given in Backus-Naur form:

<Exp> ::= <Exp> <Op2> <Exp> | <Op1> <Exp> | <terminal>
<Op2> ::= &&o | ||o | ==o | ≤o | ... | +o | -o | ... | %o
<Op1> ::= ++o | –o | ¬o | -o
<terminal> ::= const <num> | var <id> | true | false
<num> ::= 1 | 2 | 3 | ...
<id> ::= x | y | z | ...

Evaluation of these expressions is defined with respect to the operator
instantiations abstracted away behind the data-interface. If assertions are
to be precisely expressions, however, the language given above may seem to
allow for some unusual assertions that may raise an eyebrow. What do the
assertions (2 + 1) or (x * 5) mean? The problem is that, as mentioned on
page 6, expressions need to at least be a subset of assertions to allow for the
substitution of the former into the latter.

An incredibly baroque solution to this problem would be enforcing a type
system that distinguishes between Boolean variables and Integer variables
within the deep embedding. The alternative, much simpler, solution that
has been opted for here is to assume implicit casting between Ints and Bools
within both the expressions and the assertions, drastically simplifying both.

Following C, C++, and most other languages with implicit casting, any
non-zero integer is taken to have truth-value true, and zero, a truth-value of
false. Thus, the expressions (2 + 4) and (4 * 0) are valid assertions having
constant values true and false respectively.

The next complication involves the handling of stuck expressions. Is
the assertion (x == (y / 0)) to be read as false? Is it even an Assertion?
The assertions in Hoare Logic (or assertions in general) are understood to be
boolean-valued functions over the state space, but with the present treatment
some assertions are only partial functions of the state space as the truth value
of any assertion with a variable is undefined in all states in which that variable
is not defined; as is any assertion that contains a division by zero error.

22

This is a problem often brushed aside casually - if mentioned at all - in
typical expositions of the subject and it is easy to see why — any sensible
programmer will avoid writing code where the non-zero-ness of a divisor is
not obvious and a variable that is undefined will immediately make itself
apparent. Unfortunately, in a constructive formalisation such as this one,
sweeping things under the table is not an option nor desirable so the compli-
cation must be addressed.

Semantically, this problem is resolved by Dijkstra in [4] by introducing
a predicate into the expression/assertion language of the form D(E) which
returns true when the given state lies within the domain of the expression E .
The weakest precondition of the assignment mechanism is then rewritten as:

wp(x := E ,R) = {D(E) cand (sub E x R)}

. . . with cand being the conditional boolean && that only evaluates the
second argument if necessary. In essence, the semantics are changed so that
any stuck assertion will be rendered as false. From the perspective of Hoare
logic — from outside the deep embedding — this solution seems reasonable
as with Hoare logic being a deductive system, it is only whether assertions
are true that is of concern, not the conditions under which they fail to be so.

With that said, this only answers the question of how stuck expressions
are to be treated semantically, not how to handle the issue syntactically
within this formalisation. Perhaps D(E) could be added to the expression
language, as the well-formed-ness of an expression in a given state can be
defined inductively and checked mechanically. However, making this change
would also change the semantics of the imperative language that is also to
be embedded.

It is obviously undesirable to have ‘(x == (y / 0)) def
= false’ within the

semantics of the programming language that users of this library are to form
the programs they want to prove correct, as no sensible language should
allow ‘if (¬ (x == (y / 0))) ...’ to evaluate16 - not to mention the
fact that this would be a deviation from the intention outlined previously for
the formalised imperative language to mirror real world languages.

So the desired state of affairs is to have stuck expressions be undefined
within the programming language, but equate them to false without. The
solution used to achieve this was to modify the data interface so that all

16What on earth would it even evaluate to?

23

operations — and by extension the expression eval function — had the
option of failing via wrapping the output of each in the Maybe type.

With this decision made, the definition of a well-formed-formula could
be given simply in terms of evaluation. i.e.an expression/assertion is a well-
formed formula if and only if it can be evaluated successfully:

WFF : Assertion → S → Set
WFF a s = Is-just (evalExp a s)

Wth that in place, an assertion proper for the sake of Hoare logic can be
represented as follows:

Assert : ∀ s A → Set
Assert s A = Σ (WFF A s) (T ◦ toTruthValue)
– Alternative, condensed syntax:
� : ∀ s A → Set
s � A = Assert s A

That is, to assert an expression/assertion is to prove it a WFF such that
this WFF has truth value true. This allows a definition to be given of what
it means for one assertion to imply another:

⇒ : Assertion → Assertion → Set
P ⇒ Q = (s : S) → s � P → s � Q

Followed finally by an inference example showcasing how assertions are
to be embedded and manipulated within the library:

a1
def
= x == 2 ∧ y == 1

private a : Assertion
a = ((val x) == (const 2○))

∧
((val y) == (const 1○))

a2
def
= x == 2

private a2 : Assertion
a2 = (val x) == (const 2○)

inferenceExample : a1 ⇒ a2
inferenceExample s �x &y = let x = getIdVal x s ==v (just 2○) in

let y = getIdVal y s ==v (just 1○) in
ConjunctionElimleft x y �x &y

24

2.4 The ‘Mini-Imp’ Programming Language

The design and embedding of the imperative language is far simpler than that
of the expression language. A simple while-language coined ‘Mini-Imp’ was
devised containing only the programming constructs that are present in [7]
and [4] only without non-determinism present in the iterative (while_do_)
and alternative (if_then_else_) commands; again, this is in keeping with
the intention for the language to closely mirror simple real-world languages.
The programming constructs themselves are defined as state transformers
(S∆) with a program being a non-empty sequence of these state transformers:

data S∆ : Set where
skip : S∆
while_do_ : Exp → Program → S∆
if_then_else_ : Exp → Program → Program → S∆
:= : Id → Exp → S∆

data Program : Set where
– Terminator:
_; : S∆ → Program
– Separator:
; : S∆ → Program → Program

The overloaded terminator/separator construct allows for the terse and
familiar encoding of programs but does, however, necessitate a third function
for program composition which as it turns out is simply list concatenation:

– Program composition
then : Program → Program → Program
(c ;) then b = c ; b
(c ; b) then b = c ; (b then b)
– Commutativity of program composition
then-comm : ∀ c c c →
c then (c then c) ≡ (c then c) then c

then-comm (s∆ ;) c c = refl
then-comm (s∆ ; c) c c
rewrite then-comm c c c = refl

With both the expression language and Mini-Imp defined, see figure 2 for
some examples of full programs encoded within the Agda library.

25

Figure 2: Some simple programs defined with Mini-Imp; ripe for reasoning!

– Euclids Algorithm for GCD
gcd : (X Y : Exp) → Program
gcd X Y =

x := X ;
y := Y ;

(while (not (val x == val y))
do (if (val x > val y)

then (
x := val x - val y ;)

else (
y := val y - val x ;) ;));

– Multiply X and Y , and store in z
– without using multiplication op.
– ((11.4) in TSOP,Gries)
add* : (X Y : Exp) → Program
add* X Y =

x := X ;
y := Y ;
z := const 0○ ;

(while
((val y > const 0○ ∧ even 〈 val y 〉)
∨ (odd 〈 val y 〉)

)
do (if (even 〈 val y 〉)

then (
y := val y / const 2○ ;
x := val x + val x ;)

else (
y := val y - const 1○ ;
z := val z + val x ;) ;));

The end result of these two deep embeddings then, is that programs can
be encoded directly within Agda (see figure 2) in a manner that is imminently
intelligible; something that cannot often be said of Agda syntax.

2.5 The Rules to be Implemented

With the Mini-Imp language specified a rough sketch of the rules to be for-
malised can be given with the apparatus supporting these Agda definitions
to be expounded upon in the next section. First, the axiom of assignment:

D0-Axiom-of-Assignment : ∀ i e P

-- −−−−−−−−−−−−−−−−−−−−−− –
→ « (sub e i P) » (i := e ;) « P »

26

Follwed by the two rules of consequence (‘D1-Rule-of-Consequence-pre’
is omitted as it has the obvious corresponding form to the one below):

D1-Rule-of-Consequence-post : ∀ {P} {Q} {R} {S}

→ « P » Q « R » → R ⇒ S
-- −−−−−−−−−−−−−−−−−−−−−− --

→ « P » Q « S »

Then the rule of composition for the chaining of Hoare triples together.17

D2-Rule-of-Composition : ∀ {P} {R} {R} {Q} {Q}

→ « P » Q « R » → « R » Q « R »
-- −−−−−−−−−−−−−−−−−−−−−−−−−−−− --

→ « P » Q then Q « R »

And finally, most interestingly, the iterative and alternative rules:

D3-While-Rule : ∀ {P} {B} {C}

→ « P ∧ B » C « P »
-- −−−−−−−−−−−−−−−−−−−−−−−−−−−− --

→ « P » while B do C ; « (not B) ∧ P »

D4-Conditional-Rule : ∀ {A} {B} {C} {P} {Q}

→ « C ∧ P » A « Q » → « (not C) ∧ P » B « Q »
-- −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− --

→ « P » if C then A else B ; « Q »

And with that, the Hoare logic inference rules that are to be formalised
within this work have been specified.

17NB That«P»Q«R» is the notation within the codebase for {{ P }} Q {{R }}
as ‘{’ and ‘}’ are reserved for Agda’s syntax.

27

3 Implementation Details
With the syntactic aspects out the way, this section covers the semantics of
those syntactic aspects as well as some of the more nuanced or tricky aspects
of the formalisation.

3.1 Small-step Evaluation & Termination

As mentioned in section 2.1, the deep embedding of the Mini-Imp language
needs some form of observation or evaluation function to give it semantics.
This presented a challenge as Agda demands that all functions be total and
features a rather strict termination checker that will only accept functions
that it can mechanically prove terminating. Said termination checker only
checks for structural recursion, and so some argument of the evaluation func-
tion must get structurally smaller on each call. This left the only feasible
way forward being to give the Mini-Imp language semantics via a small-step
(operational) semantics which then allowed for the evaluation function to take
a ‘fuel’ argument (∈ N) that could be decremented with each call, giving the
form: ssEvalwithFuel : N → Program → S → Maybe S. The implementation
of this function is straightforward, if a little verbose, with the two most in-
teresting cases reproduced below and the full implementation given in figure
4 in the appendix.

–––
-- SINGLE WHILE
ssEvalwithFuel (suc n) (while exp do c ;) s with evalExp exp s
... | nothing = nothing -- Computation failed e.g. div by 0
... | f @ (just _) with toTruthValue { f } (Any.just tt)
... | true = ssEvalwithFuel n (c then while exp do c ;) s
... | false = just s
–––
-- WHILE ; THEN C
ssEvalwithFuel (suc n) ((while exp do c) ; c) s
with evalExp exp s

... | nothing = nothing -- Computation failed e.g. div by 0

... | f @ (just _) with toTruthValue { f } (Any.just tt)

... | true = ssEvalwithFuel n (c then ((while exp do c) ; c)) s

... | false = ssEvalwithFuel n c s
–––

28

With a small-step evaluation function defined, what it means for a pro-
gram to terminate can now be formalised like so:18

Terminates : C → S → Set
Terminates c s = Σ[f ∈ N] (Is-just (ssEvalwithFuel f c s))

bt_,_tc : C → S → Set
bt_,_tc = Terminates

TerminatesWith : N → C → S → Set
TerminatesWith f c s = Is-just (ssEvalwithFuel f c s)

bt_,_,_tc : N → C → S → Set
bt f , c , s tc = TerminatesWith f c s

The different notations above are just different ways of saying the same
thing, viz, that a program terminates if there exists some n ∈ N such that
the evaluation of the program succeeds with fuel = n. With this constructive
definition of termination, some useful lemmas for later use in formalising the
Hoare logic rules were proved:

EvalDet : ∀ {s f f ’ } C → (a : bt f , C , s tc) → (b : bt f ’ , C , s tc) → † a ≡ † b

The above function relates any two proofs of termination of the same
program from the same initial state via identifying the resultant states. This
can be taken as a proof that evaluation is deterministic — which it obviously
is — hence the name EvalDet.19 Closely related is the addFuel function below
that takes any proof of termination and generates a new proof of termination
with a given extra amount of fuel. The implementation of both of these lem-
mas is fairly straightforward albeit tedious, with the central mechanism being
induction on the structure of C. Both lemmas are used in the constructive
proof of the D3-While-Rule (see figure 6).

addFuel : ∀ {C} {s} f f ’ → bt f , C , s tc → bt (f +N f ’) , C , s tc

18NB That C is introduced here as a type synonym for Program.
19The implementation/proof of this function is given in figure 7 in the Appendix.

29

3.2 Termination Proof Splitting

On the topic of termination, a key lemma that is utilised within the proof
of both the D3-While-Rule and the D2-Rule-of-Composition is the mechanism
btc-split20 that takes a proof of termination of some program of the form
‘Q1 THEN Q2’ and outputs the following Split-btc record:

record Split-btc s f Q Q (Φ : bt f , Q then Q , s tc) : Set where
field
––- Termination Left
Lt : bt f , Q , s tc
––- There’s an f’ s.t.
f ’ : N
––- Termination Right
Rt : bt f ’ , Q , († Lt) tc
––- and 2nd proof fuel is less than starting fuel:
lt : f ’ ≤” f
––- And the output unchanged:
∆ : † Rt ≡ † Φ

That is, it ‘splits’ a proof of termination into two proofs of termination
of the two constituent parts. It is only the ∆ component that is necessary
within the rule of composition as a means of identifying the resultant state
of «R1»Q2«R» with the resultant state of «P»Q1 THEN Q2 «R». On the
other hand, for the while rule, the full record is needed.

3.3 Hoare Triples in Agda

With termination covered, it is now possible to give the definition Hoare
triples within the Agda library. The choice of notation is a result of the curly
braces being reserved for Agda’s syntax and so «P»Q«R» and JP KQ JRK
are used for partial and total correctness respectively.

«_»_«_» : Assertion → C → Assertion → Set
« P » C « Q » = (s : S) → s � P → (Φ : bt C , s tc) → († Φ) � Q

J_K_J_K : Assertion → C → Assertion → Set
J P K C J Q K = (s : S) → s � P → Σ bt C , s tc (λ Φ → († Φ) � Q)

20The implementation/proof of this function is given in figure 8 in the Appendix.

30

3.4 Axiom of Assignment

Rather than go into detail of the proofs of each and every rule, only the proofs
of D0-Axiom-of-Assignment and D3-While-Rule are detailed in this report, as
these are the most salient rules.

The formulation of the axiom of assignment first requires the construction
of a function that substitutes an expression into an assertion but given that
assertions are synonymous with expressions here, this function has signature:
sub : Exp → Id → Exp → Exp. The proof of D0-Axiom-of-Assignment, then,
isn’t too complicated, with the key mechanisms within the proof being two
lemmas that were added to the state interface:

• updateGet :

∀ i v s→ getIdVal i (updateState i v s) ≡ just v

• ignoreTop :

∀ i v x → ¬ i ≡ x → (s : S) →getIdVal x (updateState i v s) ≡ getVarVal x s

That is, any state space implementation must satisfy the above, fairly in-
tuitive, lemmas for the axiom of assignment to hold. Both have been imple-
mented within the ‘state as list’ representation as part of this formalisation.

3.5 The Rule of Iteration / While Rule

The proof/implementation of D3-While-Rule is a little more involved, but
the basic mechanism is similar to that of the proofs relating to termina-
tion/evaluation of programs, with induction being performed on the struc-
ture of a Program. The most salient mechanism as mentioned in the previous
section is the use of the btc-split function. This function is needed for the
case where the condition B of the while loop is true and therefore the body
of the loop is evaluated. Under this case, the (assumed) proof of termination
reduces to: bt f , (C then while B do C ;) , s tc but for the recursive call
a proof of termination of the form: bt f , (while B do C ;) , s tc is needed.
Obviously it is the case that if the former terminates with f fuel then so will
the latter and so the btc-split function, along with addFuel, and EvalDet, is
used to transform the proof of the former into a proof of the latter.21

21NB That the full implementations/proofs of the axiom of assignment and the While
Rule are reproduced in the appendix in figures 5, and 6 respectively.

31

3.6 Relation to Predicate Transformer Semantics

In [4] Dijkstra outlines some properties that the notion of wp and wlp must
satisfy to make sense as a means of giving semantics to a mechanism and or
programming construct. Failure to satisfy these properties would mean we
were no longer manipulating pre/post-conditions but instead just ’massaging
predicates.’

These properties are proved classically in that exposition but given the
scope of this project, it seemed natural to consider including these properties
in the formalisation as a means of sanity checking the formalisations of the
Mini-Imp mechanisms that have been defined.

However, the constructs/mechanisms that have been formalised here (:= ,
if_then_else_, while_do_ . . .) have been formalised in terms of how they
are to be executed, which is precisely the approach to defining programming
constructs that the notions of wp and wlp were trying to avoid. So there is
an incongruency there.

The only mechanism for which wp/wlp have come close to being formalised
is the assignment (:=) mechanism via the sub function. This is because the
sub function actually is the weakest precondition.

i.e.wp(i := e , R) = sub e i R

With that said, while the sub function has been formalised, the fact that it
is the weakest precondition hasn’t been. What has been formalised is the fact
that sub e i R ⇒ wp(i := e , R), via the proof of the axiom of assignment.

For the rest of the mechanisms, however, no attempt has been made to
formalise their corresponding wp/wlp. Nonetheless, it may be within reach
to confirm the wp-properties for just the wp that has been defined, viz the
sub function. This proves to be trivial for property 1, the so called ‘Law of
the Excluded Miracle’ (wp(S ,F) =F) . . .

LawOfExcludedMiracle-wp(:=,-) : ∀ {i e} → sub e i F ≡ F
LawOfExcludedMiracle-wp(:=,-) = refl

. . . and trivial for the second property of monotonicity, with the proof not
reproduced here. In fact, after this second property was confirmed it became
clear that this was a detour from the project scope that was adding little value
to the formalisation so the exploration of the formalisation’s relationship to
predicate transformer semantics stopped there.

32

Figure 3: Using the library to formalise the correctness of the SWAP program: [1/3]

SWAP : ∀ X Y →
« x == (const X) ∧ y == (const Y) » – Precondition

z := val x ;
x := val y ;
y := val z ;

« x == (const Y) ∧ y == (const X) » – Postcondition
SWAP X Y = �
where
– – Reasoning backwards from Postcondition Q to Precondition P

PRE : Assertion
PRE = x == (const X) ∧ y == (const Y)

POST : Assertion
POST = x == (const Y) ∧ y == (const X)

A : Assertion
A = ((sub (val z) y (val x)) == (const Y)) ∧ (z == (const X))

s : « A » y := val z ; « POST »
s = let Ψ = D0-Axiom-of-Assignment y (val z) POST in go Ψ

where
go : « ((sub (val z) y (val x)) == (const Y))

∧ ((sub (val z) y (val y)) == (const X)) »
y := val z ; « POST » →
« A » y := val z ; « POST »

go t with y ?id= x
go t | yes p rewrite p with x ?id= x
go t | yes p | yes q = t
go t | yes p | no ¬q = ⊥-elim (¬q refl)
go t | no ¬p with y ?id= y
go t | no ¬p | yes q = t
go t | no ¬p | no ¬q = ⊥-elim (¬q refl)...

33

Figure 3: Using the library to formalise the correctness of SWAP program cont. [2/3]

...
A : Assertion
A = ((sub (val y) x (sub (val z) y (val x))) == (const Y)) ∧ (z == (const X))

s : « A » x := val y ; « A »
s = let Ψ = D0-Axiom-of-Assignment x (val y) A in go Ψ

where
go : « ((sub (val y) x (sub (val z) y (val x))) == (const Y))

∧ ((sub (val y) x (val z)) == (const X)) »
x := val y ; « A » →
« A » x := val y ; « A »

go t with x ?id= z
go t | yes p = ⊥-elim (x 6≡z p)
go t | no _ = t

A : Assertion
A = ((sub (val x) z (sub (val y) x (sub (val z) y (val x)))) == (const Y))

∧ (x == (const X))

s : « A » z := val x ; « A »
s = let Ψ = D0-Axiom-of-Assignment z (val x) A in go Ψ

where
go : « ((sub (val x) z (sub (val y) x (sub (val z) y (val x)))) == (const Y))

∧ ((sub (val x) z (val z)) == (const X)) »
z := val x ; « A » →
« A » z := val x ; « A »

go t with z ?id= z
go t | yes _ = t
go t | no ¬p = ⊥-elim (¬p refl)

...

34

Figure 3: Using the library to formalise the correctness of SWAP program cont. [3/3]

...
s : A ≡ (y == (const Y) ∧ x == (const X))
s with y ?id= x
s | yes _ with x ?id= z
s | yes _ | yes q = ⊥-elim (x 6≡z q)
s | yes _ | no _ with z ?id= z
s | yes p | no _ | yes _ rewrite p = refl
s | yes _ | no _ | no w = ⊥-elim (w refl)
s | no ¬p with x ?id= x
s | no _ | no ¬q = ⊥-elim (¬q refl)
s | no _ | yes _ with z ?id= y
s | no _ | yes _ | yes w = ⊥-elim (y 6≡z (sym w))
s | no _ | yes _ | no _ = refl
s : « A » x := val y ; y := val z ; « POST »
s = D2-Rule-of-Composition {A} {A} {POST} s s

s : « A » z := val x ; x := val y ; y := val z ; « POST »
s = D2-Rule-of-Composition {A} {A} {POST} s s

� : « PRE » z := val x ; x := val y ; y := val z ; « POST »
� = D1-Rule-of-Consequence-pre {A} {swap} {POST} {PRE} s go

where
go : PRE ⇒ A

go s x rewrite ConjunctionComm
(evalExp (x == const X) s)
(evalExp (y == const Y) s)

= subst (λ p → s � p) (sym s) x

35

4 Project Evaluation

4.1 Using the System to Reason about Programs

With the Hoare logic rules implemented, proofs of program correctness can
now be constructed using the Agda library that has been developed.

Only a simple example has been constructed, a proof of correctness of the
SWAP program, of the form shown below. See figure 3 for the actual proof.

« x == (const X) ∧ y == (const Y) » – Precondition

z := val x ;
x := val y ;
y := val z ;

« x == (const Y) ∧ y == (const X) » – Postcondition

While this is a very simple and meagre example that doesn’t even utilise
the While Rule, it is sufficient for evaluating the use of the Agda library that
has been produced for the task of formalising proofs of correctness of simple
programs. The process, ultimately, even for incredibly simple programs, is
rather tedious as it forces the user to think very carefully and belabour with
great assiduity. In the end, more time is spent manipulating syntax than
convincing oneself of correctness, but perhaps that is to be expected when
one considers that the task in a formalisation such as this one is ultimately
to convince the machine of the correctness, not the user.

4.2 Deliverables

The most salient achievement of this project, then, is a novel and constructive
formalisation of a selection of Hoare logic inference rules in Agda. This has
been achieved with a deep embedding of a simple while language ‘Mini-
Imp.’ This language was given an operational semantics via a small-step
evaluation function and an axiomatic semantics via the Hoare logic rules thus
demonstrating, nay, formalising the interplay and or consistency between the
two approaches to programming language semantics. In terms of practical
utility the Agda library as a system for reasoning about programs leaves a
lot to be desired, but perhaps with much more work it could prove a useful
building block for a much more useful tool.

36

4.3 Reflection on the use of Agda

Reflecting on the usage of Agda for this project, there are some clear positives
and negatives. One positive is Agda’s support for unicode in source code that
allows for some beautiful proofs. With great power, however, comes great
responsibility and one shouldn’t use fancy unicode characters just because
one can — a rule that was fallen afoul of more than a few times — but rather,
it was learned, only when they can provide greater clarity or terseness.

On that note, an interesting observation is that frequently the aesthetic
nature of a signature rendered in all its unicode splendour led to a reluctance
to sanity check it semantically — even after hours spent in vain trying to
prove it. This psychological bias, once noticed, was overcome by paying closer
attention to the semantic content of a signature rather than its syntactic
form and also by spending more time considering the signatures themselves
before charging in and attempting to prove something syntactically pretty
but semantically absurd.

Finally, an oft encountered negative of Agda was the verbose and unhelp-
ful nature of its reporting of goal types. Perhaps this was just a problem
particular to this project, but at times, upon asking for the type of a hole
in a proof while constructing a proof interactively, a myriad of symbols was
produced as a result of Agda fully unpacking all the declarations. See figure
9 in the appendix for an example.

4.4 Missteps & Drawbacks

Many wrong turns were taken on the way to completing this project. Of the
most notable was an initial insistence on enforcing a type system within the
assertion language without impacting the expression language. The desire
was for ‘x + 5’ and other integer valued expressions to not be valid asser-
tions but eventually it was realised that the formalisation became far simpler
and terser once implicit casting between integers and booleans was assumed.

A big drawback of the current system, somewhate mitigated by the proof
obligation interfaces, is the need to formalise simple and obvious lemmas of
the assertion language. The cumbersome necessity of formalising the obvious,
however, is part and parcel of most formalisations so is not worth much
commentary here.

Another shortcoming is the inability to specify the free or non-free vari-
ables of an expression and or assertion. Such a facility would allow the proof

37

of correctness of the SWAP program to be generalised over expressions. With
the current formulation, SWAP cannot be said to swap the values of x and y if
their initial values X and Y are described by arbitrary expressions as, being
arbitrary, they may contain x or y . Relatedly, the only variables available for
program specification currently are x , y , and z with extra variables needed
to be added as required. This is clunky and ideally some facility or interface
would exist that would allow a user the functionality described as ‘give me a
fresh variable’ or, ‘give me a fresh variable that is not used in this expression
E .’ Such functionality, however, is left for possible future work.

4.5 Future Work

As mentioned in section 4.2, the present work is not all that useful in practice.
With considerably more work, this library could be a useful tool for proving
correct very simple programs, the issues addressed in the previous section
would need to be addressed, however. Perhaps some semi-automated tool
could be developed to at least ease the burden of having to transcribe program
snippets into Agda or the pain of tedious syntax manipulation; the final
output of the tool being a proof checkable by Agda.

In terms of the formalisation, the next step beyond fixing the issues men-
tioned prior would be expanding the system with Separation Logic. This
would allow for the manipulation of assertions containing pointers and claims
upon the heap space, rather than just the values of local variables. In theory
this is imminently achievable, but in practice may prove otherwise.

4.6 Conclusion & Personal Reflection

If the authors whose works made up much of the literature referenced in
this report could comment on this work, a ‘we told you so’ would be more
than justified. Each one at some point in the papers or monographs read in
preparation for this project mentioned the need for ‘a fine balance’ between
‘formality and common sense’ and it’s fair to say that the scales have tipped
away from common sense and towards formality in this project and as a
result the most ‘practical’ output of this work is a three-page proof of the
correctness of the SWAP program.

But as I now believe, the central purpose of a constructive formalisation
isn’t in practicality but in the education and entertainment of the person
doing the constructing and in that sense, the project is a great success.

38

References
[1] Andrew W. Appel. Verified software toolchain. In Gilles Barthe, editor,

Programming Languages and Systems, pages 1–17, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[2] Edsger W. Dijkstra. Some meditations on advanced programming. In In-
formation Processing, Proceedings of the 2nd IFIP Congress 1962, Mu-
nich, Germany, August 27 - September 1, 1962, pages 535–538. North-
Holland, 1962.

[3] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Communications of the ACM, 18(8):453–457,
August 1975.

[4] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[5] Robert W. Floyd. Assigning meanings to programs. Proceedings of
Symposium on Applied Mathematics, 19:19–32, 1967.

[6] David Gries. The Science of Programming. Texts and Monographs in
Computer Science. Springer, 1981.

[7] Charles Antony Richard Hoare. An axiomatic basis for computer pro-
gramming. Communications of the ACM, 12(10):576–580, 1969.

[8] Donald E. Knuth and Peter B. Bendix. Simple word problems in univer-
sal algebras. In John Leech, editor, Computational Problems in Abstract
Algebra, pages 263–297. Pergamon, 1970.

[9] Ulf Norell. Towards a practical programming language based on depen-
dent type theory, volume 32. Citeseer, 2007.

[10] Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning
about programs that alter data structures. In Laurent Fribourg, editor,
Computer Science Logic, pages 1–19, Berlin, Heidelberg, 2001. Springer
Berlin Heidelberg.

[11] John C Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings 17th Annual IEEE Symposium on Logic in
Computer Science, pages 55–74. IEEE, 2002.

39

5 Appendix

40

Figure 4: The full definition of the small-step evaluation function [1/2]

–––
ssEvalwithFuel : N → C → S → Maybe S
–––
-- Skip always terminates successfully even with zero fuel
ssEvalwithFuel zero (skip ;) s = just s
ssEvalwithFuel (suc n) (skip ;) s = just s
–––
-- Out of fuel
-- Need to explicitly give all cases here so Agda can see
-- ‘eval zero C = nothing’ is definitionally true when C6=skip
ssEvalwithFuel zero (while _ do _ ;) _ = nothing
ssEvalwithFuel zero (if _ then _ else _ ;) _ = nothing
ssEvalwithFuel zero (_ := _ ;) _ = nothing
ssEvalwithFuel zero ((while _ do _) ; _) _ = nothing
ssEvalwithFuel zero ((if _ then _ else _) ; _) _ = nothing
ssEvalwithFuel zero ((_ := _) ; _) _ = nothing
ssEvalwithFuel zero (skip ; b) s = ssEvalwithFuel zero b s
–––
-- SINGLE WHILE
ssEvalwithFuel (suc n) (while exp do c ;) s with evalExp exp s
... | nothing = nothing -- Computation failed i.e. div by 0
... | f @ (just _) with toTruthValue { f } (Any.just tt)
... | true = ssEvalwithFuel n (c then while exp do c ;) s
... | false = just s
–––
-- SINGLE IF THEN ELSE
ssEvalwithFuel (suc n) (if exp then c else c ;) s
with evalExp exp s

... | nothing = nothing -- Computation failed i.e. div by 0

... | f @ (just _) with toTruthValue { f } (Any.just tt)

... | true = ssEvalwithFuel n c s

... | false = ssEvalwithFuel n c s
–––

...
41

Figure 4: The full definition of the small-step evaluation function cont. [2/2]

...
–––
-- SINGLE ASSI
ssEvalwithFuel (suc n) (id := exp ;) s =
map (λ v → updateState id v s) (evalExp exp s)

–––
-- SKIP ; THEN C
ssEvalwithFuel (suc n) (skip ; c) s = ssEvalwithFuel (suc n) c s
–––
-- WHILE ; THEN C
ssEvalwithFuel (suc n) ((while exp do c) ; c) s
with evalExp exp s

... | nothing = nothing -- Computation failed i.e. div by 0

... | f @ (just _) with toTruthValue { f } (Any.just tt)

... | true = ssEvalwithFuel n (c then ((while exp do c) ; c)) s

... | false = ssEvalwithFuel n c s
–––
–- IF THEN ELSE ; THEN C
ssEvalwithFuel (suc n) ((if exp then c else c) ; c) s
with evalExp exp s

... | nothing = nothing -- Computation failed i.e. div by 0

... | f @ (just _) with toTruthValue { f } (Any.just tt)

... | true = ssEvalwithFuel n (c then c) s

... | false = ssEvalwithFuel n (c then c) s
–––
–- ASSI ; THEN C
ssEvalwithFuel (suc n) ((id := exp) ; c) s with evalExp exp s
... | nothing = nothing -- Computation failed i.e. div by 0
... | (just v) = ssEvalwithFuel n c (updateState id v s)
–––

42

Figure 5: The full proof/implementation of the Axiom of Assignment.

D0-Axiom-of-Assignment i e P s (wff , `sub) (suc n , p)
with evalExp e s | inspect (evalExp e) s

... | (just v) | [eq] = Ψ
where

lem : ∀ v s → evalExp (term (Var v)) s ≡ getIdVal v s
lem v s = refl

Is-just-witness-rewrite : ∀ {l} → {A : Set l} → {a : A}
→ (p : Is-just (just a)) → to-witness p ≡ a

Is-just-witness-rewrite (Any.just x) = refl

–––
updateState�sub : ∀ P e i v s → evalExp e s ≡ just v
→ evalExp P (updateState i v s) ≡ evalExp (sub e i P) s

updateState�sub (op P x P) e i v s comp
rewrite updateState�sub P e i v s comp
| updateState�sub P e i v s comp = refl

updateState�sub (op x P) e i v s comp
rewrite updateState�sub P e i v s comp = refl

updateState�sub (term (Const x)) e i v s comp = refl
updateState�sub (term true) e i v s comp = refl
updateState�sub (term false) e i v s comp = refl
updateState�sub (term (Var x)) e i v s comp with i ?id= x
... | yes q rewrite lem x (updateState i v s)

| q | updateGet x v s = sym comp
... | no q rewrite lem x (updateState i v s)

| ignoreTop i v x q s = refl
–––

Λ : (updateState i v s) � P
Λ rewrite updateState�sub P e i v s eq = wff , `sub

Ψ : (to-witness p) � P
Ψ rewrite Is-just-witness-rewrite p = Λ
–––

43

Figure 6: The full proof of the ‘While Rule’/‘Rule of Iteration’ [1/2]

D3-While-Rule {P} {B} {C} PBCP s �P (suc f , btC tc) = go (suc f) �P btC tc
where
––
– Using mutually recursive functions go and go-true
go : ∀ {s} f → s � P → (btC tc : bt f , (while B do C ;) , s tc)

→ († btC tc) � (op (op ¬o B) &&o P)
– f needs to be an argument by itself outside the Sigma type
– so we can recurse on it as Agda can’t see it always
– decrements with each call if it is inside the product.
–––-
– case where B is true
go-true : ∀ {s} {f} {v} → s � P → (evalExp B s ≡ just v)

→ (toTruthValue {just v} (just tt) ≡ true)
→ (btC tc : bt f , (C then while B do C ;) , s tc)
→ (to-witness btC tc) � (op (op ¬o B) &&o P)

go-true {s} {f} �P p p btC tc
with btc-split f s C (while B do C ;) btC tc

... | record { Lt = Lt ; f ’ = f ’ ; Rt = Rt ; lt = lt ; ∆ = ∆ } = Λ
where
�B : s � B
�B rewrite p = (just tt , subst T (sym p) tt)
�P&B : s � (op P &&o B)
�P&B = ConjunctionIntro _ _ �P �B
�P’ : († Lt) � P
�P’ = PBCP s �P&B (f , Lt)
– Proof of termination of rhs of split with f’
Rt+ : bt f ’ + (k lt) , (while B do C ;) , († Lt) tc
Rt+ = addFuel {while B do C ;} f ’ (k lt) Rt

– f’ with (f’ ≤ f) implies termination with f fuel
Rtf : bt f , (while B do C ;) , († Lt) tc
Rtf = let C1 = (while B do C ;) in subst

(λ f → bt f , C1 , († Lt) tc) (proof lt) Rt+

...

44

Figure 6: The full proof of the ‘While Rule’/‘Rule of Iteration’ [2/2]
cont.

...
– This new proof of termination Rtf has same output
isDet : † Rtf ≡ † Rt

isDet = EvalDet {_} {f} {f ’} (while B do C ;) Rtf Rt

– and said output is identical to the original output
∆’ : † Rtf ≡ † btC tc
∆’ rewrite isDet = ∆
– which we can now use in a recursive call: (suc f) ⇒ f
GO : († Rtf) � (op (op ¬o B) &&o P)
GO = go {† Lt} f �P’ Rtf

– and finally get the type we need via substitution with ∆’
Λ : († btC tc) � (op (op ¬o B) &&o P)
Λ = subst (λ s → s � (op (op ¬o B) &&o P)) ∆’ GO
–––-
– case where B is false
go-false : ∀ {s} {v} → s � P → (evalExp B s ≡ just v)

→ (toTruthValue {just v} (just tt) ≡ false)
→ s � (op (op ¬o B) &&o P)

go-false {s} {v} �P p p = ConjunctionIntro _ _ �¬B �P
where
6�B : 6` (just v)
6�B rewrite p = (just tt) , subst (T ◦ not) (sym p) tt
�¬B : s � (op ¬o B)
�¬B rewrite p = (NegationIntro (just v) (6�B))

–––-
go {s} (suc f) �P btC tc with

evalExp B s | inspect (evalExp B) s
... | f@(just v) | [p] with

toTruthValue {f} (any tt) | inspect (toTruthValue {f}) (any tt)
... | true | [p] = go-true {s} {f} �P p p btC tc
... | false | [p] rewrite Is-just-witness-rewrite btC tc = go-false �P p p
–––-

45

Figure 7: The proof/implementation of EvalDet.
NB that the † function is the function that extracts the witness from the proof of termi-
nation - i.e. the resultant state after the computation has terminated successfully.

–––
EvalDet : ∀ {s f f ’} C

→ (a : bt f , C , s tc) → (b : bt f ’ , C , s tc) → † a ≡ † b
–––
pattern ⇑ x = suc x
EvaluationIsDeterministic = EvalDet
–––
EvalDet {s} {0} {0} (_ ;) ij ij rewrite ∃!IJ ij ij = refl
EvalDet {s} {0} {⇑ _} (skip ;) ij ij rewrite ∃!IJ ij ij = refl
EvalDet {s} {⇑ _} {0} (skip ;) ij ij rewrite ∃!IJ ij ij = refl
EvalDet {s} {⇑ _} {⇑ _} (skip ;) ij ij rewrite ∃!IJ ij ij = refl
EvalDet {s} {⇑ f} {⇑ f ’} ((while exp do c) ;) ij ij
with evalExp exp s

... | cond@(just _) with toTruthValue {cond} (Any.just tt)

... | false rewrite ∃!IJ ij ij = refl

... | true = EvalDet {s} {f} {f ’} _ ij ij
...

EvalDet {s} {⇑ f} {⇑ f ’} ((while exp do c) ; c) ij ij
with evalExp exp s

... | cond@(just _) with toTruthValue {cond} (Any.just tt)

... | false = EvalDet {s} {f} {f ’} _ ij ij

... | true = EvalDet {s} {f} {f ’} _ ij ij

...
EvalDet {s} {⇑ f} {⇑ f ’} ((id := exp) ; c) ij ij
with evalExp exp s

... | (just v) = EvalDet {updateState id v s} {f} {f ’} _ ij ij
EvalDet {s} {⇑ f} {⇑ f ’} (skip ; c) = EvalDet {s} {⇑ f} {⇑ f ’} c
EvalDet {s} {0} {0} (skip ; c) ij ij rewrite ∃!IJ ij ij = refl
-- In the clause below, with f = 0 and f’ = ⇑ _, the only possibility if
-- we are to have two proofs of termination in ij and ij is that the
-- rest of the mechanisms in c are all also ‘skip ’. So take the two
-- cases of either c = (skip ;) or c = (skip ; ... ; (skip ;)) in turn.
-- Annoyingly we have to do this for both permutations of f/f’ = 0/⇑ _
EvalDet {s} {0} {⇑ f ’} (skip ; (skip ;)) ij ij rewrite ∃!IJ ij ij = refl
EvalDet {s} {0} {⇑ f ’} (skip ; (skip ; c)) = EvalDet {s} {0} {⇑ f ’} c
EvalDet {s} {⇑ f} {0} (skip ; (skip ;)) ij ij rewrite ∃!IJ ij ij = refl
EvalDet {s} {⇑ f} {0} (skip ; (skip ; c)) = EvalDet {s} {⇑ f} {0} c
–––

46

Figure 8: The proof/implementation of btc-split [1/3]
NB some cases have been omitted but none that vary from the general pattern here.

–––
btc-split’ : ∀ f s Q Q → (t : bt f , Q then Q , s tc)

→ Σ bt f , Q , s tc (λ t
→ Σ N (λ f ’
→ f ’ ≤” f × Σ bt f ’ , Q , † t tc (λ t
→ † t ≡ † t)))

–––

–––
– Base case: Q = skip ;
btc-split’ f@0 s (skip ;) Q t =
(Any.just tt) , f , ≤with refl , t , refl
btc-split’ f@(suc _) s (skip ;) Q t =
(Any.just tt) , f , ≤with (+-comm f 0) , t , refl

– Q = skip : Q ’
btc-split’ f@0 s (skip ; Q’) = btc-split’ f s Q’
btc-split’ f@(suc _) s (skip ; Q’) = btc-split’ f s Q’

–––
– Most interesting inductive case: while followed by Q’ then Q.
– All other cases follow a similar recursive mechanism
btc-split’ (suc f) s Q@((while exp do c) ; Q’) Q t = go
where
go : Σ bt suc f , Q , s tc (λ t → Σ N (λ f ’ → f ’ ≤” suc f ×

Σ bt f ’ , Q , † t tc (λ t → † t ≡ † t)))
go with evalExp exp s
go | f@(just _) with toTruthValue {f} (Any.just tt)
– if false –––––––––––––––––––-
go | f@(just _) | false with btc-split’ f s Q’ Q t
go | just _ | false | t , f ’ , lt , t , ∆

= t , f ’ , suc≤” lt , t , ∆
– if true ––––––––––––––––––––
go | f@(just _) | true rewrite

then-comm ((while exp do c) ;) Q’ Q

| then-comm c ((while exp do c) ; Q’) Q with
btc-split’ f s (c then while exp do c ; Q’) Q t

go | f@(just _) | true | t , f ’ , lt , t , ∆
= t , f ’ , suc≤” lt , t , ∆

...
47

Figure 8: The proof/implementation of btc-split [2/3]
NB some cases have been omitted but none that vary from the general pattern here.

...
–––
– Q = while ;
btc-split’ (suc f) s Q@((while exp do c) ;) Q t = go
where
go : Σ bt suc f , Q , s tc (λ t → Σ N (λ f ’ → f ’ ≤” suc f ×

Σ bt f ’ , Q , † t tc (λ t → † t ≡ † t)))
go with evalExp exp s
go | f@(just _) with toTruthValue {f} (Any.just tt)
– if false –––––––––––––––––––-
go | f@(just _) | false

= (Any.just tt) , f , ≤with (+-comm f 1) , t , refl
– if true ––––––––––––––––––––
go | f@(just _) | true rewrite

then-comm c ((while exp do c) ;) Q with
btc-split’ f s (c then while exp do c ;) Q t

go | f@(just _) | true | t , f ’ , lt , t , ∆
= t , f ’ , suc≤” lt , t , ∆

–––
– Q = if then else ; Q’
btc-split’ (suc f) s Q@((if exp then c else c) ; Q’) Q t = go
where
go : Σ bt suc f , Q , s tc (λ t → Σ N (λ f ’ → f ’ ≤” suc f ×

Σ bt f ’ , Q , † t tc (λ t → † t ≡ † t)))
go with evalExp exp s
go | f@(just _) with toTruthValue {f} (Any.just tt)
– if false –––––––––––––––––––-
go | f@(just _) | false rewrite then-comm c Q’ Q

with btc-split’ f s (c then Q’) Q t
go | f@(just _) | false | t , f ’ , lt , t , ∆

= t , f ’ , suc≤” lt , t , ∆
– if true ––––––––––––––––––––
go | f@(just _) | true rewrite then-comm c Q’ Q

with btc-split’ f s (c then Q’) Q t
go | f@(just _) | true | t , f ’ , lt , t , ∆

= t , f ’ , suc≤” lt , t , ∆
–––

...

48

Figure 8: The proof/implementation of btc-split [3/3]
NB some cases have been omitted but none that vary from the general pattern here.

...
–––
– Q = if then else
btc-split’ (suc f) s Q@((if exp then c else c) ;) Q t
= go
where
go : Σ bt suc f , Q , s tc (λ t → Σ N (λ f ’ → f ’ ≤” suc f ×

Σ bt f ’ , Q , † t tc (λ t → † t ≡ † t)))
go with evalExp exp s
go | f@(just _) with toTruthValue {f} (Any.just tt)
– if false –––––––––––––––––––-
go | f@(just _) | false with btc-split’ f s c Q t
go | f@(just _) | false | t , f ’ , lt , t , ∆

= t , f ’ , suc≤” lt , t , ∆
– if true ––––––––––––––––––––
go | f@(just _) | true with btc-split’ f s c Q t
go | f@(just _) | true | t , f ’ , lt , t , ∆

= t , f ’ , suc≤” lt , t , ∆
–––
– Q = x := exp ; Q’
btc-split’ (suc f) s Q@(id := exp ; Q’) Q t = go
where
go : Σ bt suc f , Q , s tc (λ t → Σ N (λ f ’ → f ’ ≤” suc f ×

Σ bt f ’ , Q , † t tc (λ t → † t ≡ † t)))
go with evalExp exp s
go | f@(just v)

with btc-split’ f (updateState id v s) Q’ Q t
go | f@(just v) | t , f ’ , lt , t , ∆

= t , f ’ , suc≤” lt , t , ∆
–––
– Q = id := exp ;
btc-split’ (suc f) s Q@(id := exp ;) Q t = go
where
go : Σ bt suc f , Q , s tc (λ t → Σ N (λ f ’ → f ’ ≤” suc f ×

Σ bt f ’ , Q , † t tc (λ t → † t ≡ † t)))
go with evalExp exp s
... | f@(just _)

= (Any.just tt) , f , ≤with (+-comm f 1) , t , refl
–––

49

Figure 9: An example of the verbosity that was sometimes encountered when Agda
reported the type of a hole that was semantically simple, yet syntactically complex.

50

	Preliminaries & Literature Review
	Programming Language Semantics
	Axiomatic Semantics via Hoare Logic
	Predicate Transformer Semantics via Dijkstra's Weakest Precondition

	Agda as an Interactive Theorem Prover
	Formal Proof
	Constructive Mathematics
	Interactive Theorem Provers

	Modern Literature Review

	Specification of the Formalisation
	Shallow vs. Deep Embedding
	Proof Obligation Interfaces
	The Expression and/or Assertion Language
	The `Mini-Imp' Programming Language
	The Rules to be Implemented

	Implementation Details
	Small-step Evaluation & Termination
	Termination Proof Splitting
	Hoare Triples in Agda
	Axiom of Assignment
	The Rule of Iteration / While Rule
	Relation to Predicate Transformer Semantics

	Project Evaluation
	Using the System to Reason about Programs
	Deliverables
	Reflection on the use of Agda
	Missteps & Drawbacks
	Future Work
	Conclusion & Personal Reflection

	References

