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Abstract— In this paper, a set of ROS [1] nodes are pro-
grammed to talk to a P3DX robot which models the behaviour
of a waiter, moving to tables with an order when instructed with
a mobile app, and then scanning a QR code which confirms
the received order. These actions required pathfinding and
localisation implementations which were programmed in C++
and Python without any help from external libraries besides the
QR code scanning for image parsing. The following experiments
were also performed:
• The effect on pathfinding with node count: the results of

which pointed towards a node count of around 1500 being
the most optimal for path cost.

• Travel time vs map node count: the results of which
showed that due to local pathfinding and the robot’s speed,
the overall time to reach a goal is not affected by node
count.

I. INTRODUCTION

Robotics is a field which has already demonstrated the ca-
pacity for intelligent machines that can help humans in many
real, tangible ways. One task which is not widely performed
by robots, however, is that of waiting in a restaurant or bar.
This is a complex task that requires a robot take orders, navi-
gate to customers, and avoid obstacles in busy environments.
This task is unique compared to other more explored robot
tasks such as warehouse worker since it cannot be assumed
that the path will be unobstructed and there must be reliance
on user input for correct allocation of jobs and for manual
confirmation of job completion. These parameters mean that
the most important features of the project are that of dynamic
path planning and obstacle avoidance within a mapped area
and that of customer interaction via an app for ordering and
QR code scanning or job completion. If either of these parts
fail then the robot is not suitable for purpose. You will see
through our choices in algorithms and system design that
the priorities when approaching the task were to make the
system robust and reliable.

II. RELATED WORK

The navigation stack [2] is a completed codebase that
contains methods that cover the motion and navigation of
any robots running ROS. This framework is specific to
rectangular and circular robots as these were the design that
the nav-stack was originally developed on. The purpose of
the nav-stack is to be as generic as possible and facilitate
navigation and motion in any given project.

While the implementation in this project uses a graph
generated for the map, the nav-stack is able to both map
and navigate in a given area. It does not make guarantees
about optimal path distances and only has two levels of

navigation with global points of interest and local obstacle
avoidance. This project’s implementation takes this a step
further with dynamic path re-planning (used alongside local
obstacle avoidance). This is described in algorithmic detail
in Section III-E.2.

The code repository [?] for the ROS nav-stack details the
functions covered.

A paper written by Asif, M & Sabeel, M & Khan, Zeashan
details an attempt to implement a robot waiter in a lab
setting and mock restaurant [3]. The attempt is successful
in their result metric which is customer satisfaction. They
focus much more on the Human Computer Interaction end
of restaurant automation in which they describe the layout
and functionality of their LCD screen system that customers
use to interact with the robot and they do not consider the
problem of path planning and obstacle avoidance in any great
detail. Instead they use floor line tracking to allow the robot
to navigate the space and make the assumption that there
will not be any dynamic obstacles to worry about in their
simplified example.

III. ALGORITHMS AND FRAMEWORKS
A. Overview of the system

The Robot Waiter consists of 4 main subsystems, each
responsible for a separate portion of the functionality. This
decision was made partially for ease of software engineering
allowing each subsystem to be developed in parallel, but also
to permit subsystems to be swapped out and exchanged with
alternative implementations with minimal effort.
• Orders Brain: Responsible for receiving, fulfilling and

managing orders, as well as broadcasting the current
goal pose for the robot.

• Localisation: Responsible for calculating and broad-
casting the robot’s position relative to the map.

• Path Finding: Responsible for calculating and consis-
tently broadcasting global path to the current goal pose.

• Movement: Responsible for moving the robot around
the world, following paths and performing localisation
motion when necessary.

B. Localisation

The particle filter created in Assignment 2 was used for
the robot’s localisation. Improvements were made to make
it more reliable and the pose estimate was modified to give
a more accurate estimate. This was important as the pose
estimate was required by other components and if it was
wrong this could have dire consequences for the success of
the system.



Fig. 1. A High-level overview of the robot waiter sub-systems and how
they interact with one another

The changes to the algorithm involved adding adaptive re-
sampling, such that fewer particles are uniformly re-sampled
as the pose certainty increases. The pose certainty is defined
as the proportion of the total weight that exists in the largest
cluster of particles.

Once a certainty limit (in our case 90%) has been reached,
no particles are uniformly sampled. So whilst the certainty
exceeds this limit, future generations of particles are entirely
sampled (in proportion to the weights) from the previous
generation.

In addition, the pose certainty was included with the output
message, permitting other systems to detect when the robot
is localised. This could be a covariance matrix, but in this
project the certainty calculated was sent as a floating point
value.

C. Pathfinding

For the pathfinding, a ROS node was created to run on the
machine, finding a path from the robot’s pose estimate to the
goal destination. This node runs continually, publishing on
the /path topic and its output can be accepted or ignored
by other components.

1) Building a graph: To construct the graph, free open-
source 3D modelling software Blender was used to create
a plane of the map, divided into triangular regions that
the robot could move through. These were then exported
in .obj format, and read into the system which creates a
traversable graph with nodes at the centre of each triangle,
while preserving the adjacencies. This map was modified
several times throughout the project, moving nodes away
from walls if the robot was too close, and adding more

triangles to the map to create more cycles.

Fig. 2. Left: Map as shown in Blender; Right: RViz visualisation of triangle
map (green) and generated graph (blue)

2) Finding a path over the graph: An A* search algorithm
was implemented for pathfinding over the graph as it is
efficient and reasonably lightweight. The heuristic was the
Euclidean distance from the current node to the destination.
As this is guaranteed to be less than or equal to the true
distance, this algorithm is admissible and guaranteed to
return the optimal path.

The pathfinder subscribes to the topics /amcl_pose and
/move_base_simple/goal to get the pose estimate and
goal destination, respectively.

One level of obstacle detection was also implemented in
the pathfinding, however this is explained later in III-E.2.

Fig. 3. RViz visualisation of path (red) found over generated graph (blue)

D. Movement

This section details the movement node in the system.
When moving around the world,
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Algorithm 1: Motion controller state machine
Input: pose certainty factor C, upper and lower

thresholds TU , TL
1 if C > TU then
2 localised ← true
3 else if C < TL then
4 localised ← false
5 Locate obstacles
6 if localised then
7 Clear all obtacles from detected empty space
8 Mark all detected obstacles
9 Inflate all obstacles

10 if f ollowMode = GLOBAL then
11 Follow the global path
12 else if f ollowMode = LOCAL then
13 Follow the local path
14 else
15 Perform localisation motion

1) Motion controller ”state” machine: Algorithms for
following the global and local paths are included below.
Our implementation uses a simple wall-hugger for the lo-
calisation motion, but any suitable procedure for automating
localisation is sufficient, algorithms for implementing a wall-
huggers are well known, and thus is not included in this
report.

2) Defining Obstacles: The robot has a global cost-map
structure, of the same resolution and size as the occupancy
grid specified by the world map. This is utilised by the local
pathfinding for obstacle avoidance.

The current laser scan result is filtered for hits and
misses. A set of detected obstacles are created from the hits.
Represented as a 6-tuple of < d,θ ,Lx,Ly,Wx,Wy > where
d is the local distance from robot, θ is the relative angle
from robot’s current facing, Lx and Ly are the computed
coordinates of the obstacle in the robots frame, Wx and Wy
are the computed coordinates of the obstacle in the world
frame.

Various operations are required to maintain the accuracy
of the cost-map, marking and clearing obstacles, as well as
marking inflated cells and computing obstacle closeness.

Firstly, marking obstacles on the map involves converting
the all of the detected obstacles world positions into map-
cells, then flagging these cells as true obstacles.

Cells are cleared by raytracing each laser miss against the
cost-map for a certain distance, clearing the obstructed flag.

Marking inflated cells and computing obstacle closeness is
done in 2 passes. Firstly all closeness and inflation is cleared
in the first pass. Then another pass is performed, where for
each cell, if it is a true obstacle, it is flagged as obstructed.
If the cell is obstructed then an inflation filter is applied.

An inflation filter can be applied to a certain cell and
affects all surrounding cells, flagging them as obstructed
if close enough, and assigning a higher closeness value if
necessary.

The binary inflation filter and closeness filter are both pre-
computed at start-up and re-used for efficiency. Represented
as an array of pairs of < in f late,closeness> where inflate is
a boolean value and closeness a floating point value between
0 and 127.

3) Global Path Following: Whilst following the global
path the robot attempts to optimise it’s motion by looking
ahead for clear accessible nodes that it can get to.

The below algorithm uses the term ”trace robot hull”,
this means to trace a circle representing the robot’s hull
along a line and see if any local obstacles intersect this.
This procedure is explained further into the paper.

Algorithm 2: Global Path Following
Input: robot position R, set of dynamic obstacles O,

path of n nodes P, maximum global
look-ahead distance Lg, inflation map M

1 lastClearNode←−1
2 i← 0
3 for i to n do
4 d← distance from R to Pi
5 if d > Lg then
6 break
7 Trace robot hull from R to Pi against O
8 if no obstacle found then
9 Trace line from R to Pi against M

10 if line doesn’t intersect inflation then
11 lastClearNode = i
12 end
13 localPathEnd ← (i−1)
14 blocked ← (lastClearNode = 0 and n > 1)
15 else if lastClearNode = -1 or blocked then
16 Switch to local path following

f ollowMode← LOCAL
17 localPathEndPose← PlocalPathEnd
18 localGoalPose← P0
19 localGoalPose← PlastClearNode
20 Move in a straight line towards localGoalPose

E. Efficient Robot Hull Tracing

Algorithm 3 presents an optimised procedure used when
tracing the robot’s hull against an obstacle using a distance
to line segment calculation. To perform the hull trace, this
procedure is repeated for all the obstacles and performs in
linear time dependent on the number of obstacles.

1) Local Path Following:
2) Global Obstacle Avoidance: Obstacle avoidance was

performed on multiple levels, at the global level this involves
re-planning around obstacles to hopefully find an alternative
route to the goal.

The robot would sometimes get stuck in front of an
obstacle which blocked its path, with no way to proceed
to the next node in its path. To fix this the pathfinder
was modified, subscribing to ”local_obstacles”, and
the ability was added to mark nodes as ’obstructed’. For
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Fig. 4. Graphical representation of calculation of the distance between a
point and a line segment

Algorithm 3: Optimised procedure for calculating
distance between a point and line segment

Definitions: A,Q,P,B are points in space. Q is
defined as the point on line segment AB
that is closest to point P. Line AB is
perpendicular to line QP.

1 Observing figure 4, the following 3 equations can be
derived.

2 (1) cosθ =
~AP· ~AB

‖ ~AP‖‖ ~AB‖
3 (2) ‖ ~AQ‖= ‖ ~AP‖cosθ

/* ad j = hyp× cosθ */
/* Q exists at a proportion q along

~AB */

4 (3) q = ‖ ~AQ‖
‖ ~AB‖

5 Combining equations (1) and (2), gives:
‖ ~AQ‖= ‖ ~AP‖× ~AP· ~AB

‖ ~AP‖‖ ~AB‖
6 Which can be simplified to:
7 (4) ‖ ~AQ‖= ~AP· ~AB

‖ ~AB‖

8 Combining equations (3) with (4) gives: q =

~AP· ~AB
‖ ~AB‖
‖ ~AB‖

9 Which can be simplified to: q =
~AP· ~AB
‖ ~AB‖2

10 If q < 0 or q > 1 then the point Q does not lie within
the segment ~AB. Therefore q should be clamped
into the range 0−1.

11 The point Q can be found by the following formula:
12 Q = A+q× ~AB
13 Now compute the distance d from Q to P and check

if it is closer than r.
14 One final optimisation can be made here:
15 If r < d, then it follows that r2 < d2. So only need to

compare square distances, which are faster to
compute as no square root is required.

Algorithm 4: Local Path Following
Input: robot position R, position of end of local path

E, maximum local look-ahead distance Ll ,
inflation map M, inflation radius I

1 Trace line from R to Pi against M
2 if line doesn’t intersect inflation then
3 f ollowMode← GLOBAL
4 P← Compute local path from R to E
5 count←−1
6 i← 0
7 for i to n do
8 d← distance from R to Pi
9 if d > Ll then

10 break
11 Trace line from R to Pi against M
12 if line doesn’t intersect inflation then
13 localGoalPose = Pi
14 count← count +1
15 end
16 if count = −1 then

// Local path is blocked!
17 Clear and recalculate the whole costmap
18 c← Nearest non-inflated cell at least 2I away

from all local obstacles
19 localGoalPose← c
20 if length of P = 0 then

/* No local path exists, reset
and switch to global path
finding */

21 f ollowMode = GLOBAL
22 Move in a straight line towards localGoalPose

Fig. 5. Global Path (purple arrows) shown before dynamic obstacle. Green
pointer shows the robot’s position. Blue line is drawn to the current goal
position.
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Fig. 6. Global Path (purple arrows) shown around dynamic obstacle. Green
pointer shows the robot’s position. Blue line is drawn to the current goal
position.

these nodes, their ’F-score’ (projected cost of path to goal)
is incremented by a large constant value of 100 (found
through trial-and-error). As the F-score is minimised by A*
search this made them highly undesirable, ensuring they
were discounted from the pathfinding except for in the most
extreme circumstances.

A large constant was chosen to ensure instead of blocking
these nodes entirely to ensure that a path is always found
even if blocked by dynamic obstacles,

Figures 5 and 6 show the global obstacle avoidance
visualised in RViz.

3) Local Obstacle Avoidance: When global obstacle
avoidance fails, the robot switches to high-resolution local
pathfinding. This involves maintaining a closeness field in
the costmap around obstacles.

The local path is computed at a cell-level using Dijkstra’s
algorithm backed by a minimum priority queue (imple-
mented as an array-based binary heap tree). A priority queue
is used to ensure the algorithm is as efficient as possible.

The current position estimate is not completely accurate,
therefore avoiding collisions is our top priority here, so the
algorithm attempts to find a path with the lowest closeness.
This means the path may not be the shortest in terms of
distance, but is most likely to be the safest path as it tries to
minimise the distance to obstacles.

4) Local linear Movement: This is the base motion that
the robot performs. The robot simply turns to the goal, and
once within a certain angle tolerance t drives forward.

The speed at which it drives forward is scaled down based
on the proximity of detected obstacles being less than a
danger threshold D.

Immediate collision checks are done, determining if (given
it’s current velocity) within the next second the robot will
intersect with any of it’s currently detected obstacles. If

Fig. 7. Local Path cyan line shown around obstacles. Green pointer shows
the robot’s position.

Fig. 8. Local Path cyan line shown after discovering more obstacles. Green
pointer shows the robot’s position.

Fig. 9. Actual layout of obstacles (stools) used for local obstacle avoidance
test. Robot included for scale
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so, the desired velocity is immediately zeroed to prevent
collision.

t and D were set to 0.3 radians and 1 meter for the robot
configuration.

F. Order Brain: Job Processing

1) Job queue/state: In order to identify what current job
was being performed and give the robot a relevant goal, a
node to hold the jobs in a queue with their current progress
was created. This node can add and remove jobs, and it
publishes on several topics:
• /job/current - The current job selected with its

associated state.
• /job/tables - A list containing all the table loca-

tions.
• /move_base_simple/goal - A pose with the de-

sired table location.
Some of the same topics used by existing ROS packages
were chosen, notably move\_base, amcl and RViz to
permit interoperability with differing localisation and motion
systems. It also subscribes to a some fields in order for it to
manipulate the job queue:
• /amcl_pose - Used to determine the current distance

from the goal pose.
• /job/add - An interface for the phone app to use for

adding jobs.
• /job/advance - Called to advance the jobs state,

given the robot is close enough to the goal node.
• /job/delete - Removes a job from with the same

ID given.
• /qr_reader - When the robot has arrived at the jobs

table the final check is to see if the scanned QR code
is equal to the job ID.

2) QR code scanning: Using a Python wrapper for ZBar
[?] (the most prevalent QR code parser library) combined
with OpenCV [?] (a simple image viewer/drawer) the QR
node scans the webcam output for a QR code and then
provides feedback to the user by highlighting the QR code
outline and outputting the parsed code to the /qr_reader
ROS topic.

3) Network: The communication of jobs/orders between
the robot and the customers is handled by a Java server
hosted on Amazon Web Services. The server permanently
listens for new clients and the robot. It periodically broad-
casts to all clients the current state of the robot where
the state is whether the robot is connected or not and its
pose if it is connected. Meanwhile a Python node on the
robot permanently listens for new jobs from the server and
broadcasts its pose to the server.

4) Customer Interface: A simple app was created for the
’customers’ to input their orders using the interface shown in
fig10. The app connects to the server hosted on Amazon Web
Services. The user can see the status of the server and the
robot (online/offline). If the robot and the server are online
the user can input their name, select a table, and order one
of the four drinks. Their order will be sent to the server

where it will be forwarded to the robot. The user will then
be presented with the second screen where they can see a
live update of the robot’s position and the QR code that they
need to show the robot when it arrives.

Fig. 10. The two screens of the customer interface implemented as an
android app.

IV. EXPERIMENTAL RESULTS
A. Impact of node number in graph on pathfinding algorithm

1) Introduction and Hypothesis: Previously the pathfind-
ing methods were discussed, specifically, the node maps used
to give goals for the robot to travel to. In this experimental
section, the trade-off of node count vs efficiency will be
examined.

In order to investigate this, the pathfinding code was run
to three different tables from the bar, and for each of these
routes, four different graphs were used. The subsequent cost
of the route, and number of nodes traversed was recorded.
The path cost per node was then computed, and the average
taken over this. The hypothesis was that the more nodes that
were present, the cost and number of nodes traversed would
be reduced as a more optimised path could be taken.

2) Results:

TABLE I
PATH COST VS. MAP NODE COUNT

Number of nodes Goal table Path cost (m) Nodes traversed Path cost per
node (m/node)

Average path cost
(m/node)

357 1 32.43124 63 0.514781651 0.491578
357 4 7.111131 14 0.507937929
357 6 14.01242 31 0.452013452
398 1 33.2205 67 0.495828313 0.51159
398 4 6.149115 11 0.559010455
398 6 14.39512 30 0.479837367
1428 1 33.79073 130 0.259928715 0.287281
1428 4 7.089021 20 0.35445105
1428 6 14.35284 58 0.247462741
5312 1 36.47805 260 0.140300208 0.169652
5312 4 9.990841 41 0.243679049
5312 6 13.87238 111 0.124986396
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Fig. 11. Graph to show how path cost per node varies with number of
nodes

3) Analysis and Conclusion: The results show a negative
correlation between the number of nodes and path cos.
However this doesn’t hold true in the 5312 node graph
where the routes to both table 1 and 4 are larger than any
of the routes before. This is most likely due to a zigzag
effect happening where due to the path-finding having to
traverse too many nodes in an sub-optimal direction to reach
the goal. This interaction between minimising path cost and
zigzagging leads to an optimal node count around 1500
nodes.

B. Impact of node count on path execution time
1) Introduction and Hypothesis: In this experiment the

actual time it took for the robot to arrive at goals with
varying node count was examined. For 4 different node
count the robot was given jobs that sent him to 3 different
tables and the time was taken for each journey from the
bar to the table. This was repeated 3 times to remove
uncertainly. Our hypothesis was that this would mirror the
previous experiment, with the time decreasing with node
count increasing up to the 5500 node map where the time
would increase again.

2) Results:

TABLE II
NUMBER OF NODES VS. TIME TAKEN TO NAVIGATE PATH

Number of nodes Goal table Time taken (s) Average time
taken (s)

1 2 3
357 1 116.68 117.23 114.38 116.10
357 4 41.62 43.45 41.69 42.25
357 6 52.79 52.32 52.45 52.52
398 1 101.41 102.23 100.01 101.22
398 4 44.32 43.41 42.78 43.50
398 6 50.16 50.11 51.01 50.43
1428 1 112.47 113.23 112.72 112.81
1428 4 41.97 42.13 41.73 41.94
1428 6 51.83 51.23 52.03 51.70
5312 1 111.27 110.34 111.98 111.20
5312 4 32.13 32.45 32.08 32.22
5312 6 50.91 51.04 50.82 50.92
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Fig. 12. Graph to show time taken to navigate path varies with number of
nodes

3) Analysis: The results show that once the various op-
timisations that are detailed in the mover node are applied,
node count has no visible effect on real time pathing. For
each node count the time only varies by 10%. This is most
likely due to the local pathfinding that is used to reduce path
cost. If the robot can see a node that is later on in the path,
it will skip out the previous nodes in favour of the shorted
path. This nullifies the large quantities of node, and make
the path in practices a few optimised points.

V. CONCLUSIONS

Experimental evidence shows that this robot waiter was
successful. Systems were implemented, some using libraries,
but most from scratch. These were integrated and managed
to perform the desired results.
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